import torch
import numpy
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from torchvision import transforms
import torchvision.models as models
vgg = models.vgg16()
pre=torch.load('./vgg16-397923af.pth')
vgg.load_state_dict(pre)
r"""
vgg的pretrained模型是在imagenet上预训练的,提供的是一个1000分类的输出,每个类别标签见:https://gist.githubusercontent.com/yrevar/942d3a0ac09ec9e5eb3a/raw/c2c91c8e767d04621020c30ed31192724b863041/imagenet1000_clsid_to_human.txt
完美的图片大小是224*224
transform就是三步走
unsqueeze后要加下划线才是原地操作,总是忘记
有了pth文件,要先torch.load一下,后load_state_dict
"""
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],#这是imagenet
std=[0.229, 0.224, 0.225])
tran=transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
im='./1.jpeg'
im=Image.open(im)
im=tran(im)
im.unsqueeze_(dim=0)
print(im.shape)
# input()
out=vgg(im)
outnp=out.data[0]
ind=int(numpy.argmax(outnp))
print(ind)
from cls import d
print(d[ind])
print(out.shape)
# im.show()