快速排序

快速排序

快速排序是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一 部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序 过程可以递归进行,以此达到整个数据变成有序序列。

需求:

排序前:{6, 1, 2, 7, 9, 3, 4, 5, 8}

排序后:{1, 2, 3, 4, 5, 6, 7, 8, 9}

排序原理:

1.首先设定一个分界值,通过该分界值将数组分成左右两部分;

2.将大于或等于分界值的数据放到到数组右边,小于分界值的数据放到数组的左边。此时左边部分中各元素都小于 或等于分界值,而右边部分中各元素都大于或等于分界值;

3.然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两 部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。

4.重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当 左侧和右侧两个部分的数据排完序后,整个数组的排序也就完成了。

快速排序API设计:

类名 Quick
构造方法 Quick() : 创建Quick对象
成员方法 1.public static void sort(Comparable[] a) : 对数组内的元素进行排序
2.private static void sort (Comparable[] a,int lo,int hi) : 对数组a中从索引lo到索引hi之间的元素进行排序
3.public static int partition(Comparable[] a,int lo,int hi) :对数组a中,从索引lo到所有hi之间的元素进行分组,并返回分组界限对应的索引
4.private static boolean less(Comparable v,Comparable w):判断v是否小于w
5.private static void exch(Comparable[] a,int i,int j) : 交换a数组,索引i和索引j处的值

快速排序实现代码:

import java.util.Arrays;

public class Quick {
    //排序代码

        public static void sort(Comparable[] a) {
            int lo = 0;
            int hi = a.length - 1;
            sort(a, lo,hi);
        }
        private static void sort(Comparable[] a, int lo, int hi) {
            if (hi<=lo){
                return;
            }
        //对a数组中,从lo到hi的元素进行切分
            int partition = partition(a, lo, hi);   //返回的是分组的分界值所在的索引,分界值位置变换后的索引
        //对左边分组中的元素进行排序
            sort(a,lo,partition-1);
        //对右边分组中的元素进行排序
            sort(a,partition+1,hi);
        }
    public static int partition(Comparable[] a, int lo, int hi) {
        Comparable key=a[lo];//把最左边的元素当做基准值
        int left=lo;//定义一个左侧指针,初始指向最左边的元素
        int right=hi+1;//定义一个右侧指针,初始指向左右侧的元素下一个位置
//进行切分
        while(true){
//先从右往左扫描,找到一个比基准值小的元素
            while(less(key,a[--right])){//循环停止,证明找到了一个比基准值小的元素
                if (right==lo){
                    break;//已经扫描到最左边了,无需继续扫描
                }
            }
//再从左往右扫描,找一个比基准值大的元素
            while(less(a[++left],key)){//循环停止,证明找到了一个比基准值大的元素
                if (left==hi){
                    break;//已经扫描到了最右边了,无需继续扫描
                }
            }
            if (left>=right){
//扫描完了所有元素,结束循环
                break;
            }else{
//交换left和right索引处的元素
                exch(a,left,right);
            }
        }
//交换最后rigth索引处和基准值所在的索引处的值
        exch(a,lo,right);
        return right;//right就是切分的界限
    }

    /*
    数组元素i和j交换位置
    */
    private static void exch(Comparable[] a, int i, int j) {
        Comparable t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
    /*
    比较v元素是否小于w元素
    */
    private static boolean less(Comparable v, Comparable w) {
        return v.compareTo(w) < 0;
    }

//测试代码

    public static void main(String[] args) throws Exception {
        Integer[] arr = {6, 1, 2, 7, 9, 3, 4, 5, 8};
        Quick.sort(arr);
        System.out.println(Arrays.toString(arr));
    }

}

2.4 排序的稳定性

稳定性的定义:

数组arr中有若干元素,其中A元素和B元素相等,并且A元素在B元素前面,如果使用某种排序算法排序后,能够保 证A元素依然在B元素的前面,可以说这个该算法是稳定的。

稳定性的意义:

如果一组数据只需要一次排序,则稳定性一般是没有意义的,如果一组数据需要多次排序,稳定性是有意义的。例 如要排序的内容是一组商品对象,第一次排序按照价格由低到高排序,第二次排序按照销量由高到低排序,如果第 二次排序使用稳定性算法,就可以使得相同销量的对象依旧保持着价格高低的顺序展现,只有销量不同的对象才需 要重新排序。这样既可以保持第一次排序的原有意义,而且可以减少系统开销。

第一次按照价格从低到高排序:

商品名称 价格 销量
三星Note 3999 21
华为mate 4999 65
华为p40 5999 65
iPhone13 6899 32

第二次按照销量进行从高到低排序:

商品名称 价格 销量
华为mate 3999 65
华为p40 4999 65
iPhone13 5999 32
三星Note 6899 21

常见排序算法的稳定性:

冒泡排序:

只有当arr[i]>arr[i+1]的时候,才会交换元素的位置,而相等的时候并不交换位置,所以冒泡排序是一种稳定排序算法

选择排序:

选择排序是给每个位置选择当前元素最小的,例如有数据{5(1),8 ,5(2), 2, 9 },第一遍选择到的最小元素为2, 所以5(1)会和2进行交换位置,此时5(1)到了5(2)后面,破坏了稳定性,所以选择排序是一种不稳定的排序算法

插入排序:

比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其 后面,否则一直往前找直到找到它该插入的位置。如果碰见一个和插入元素相等的,那么把要插入的元素放在相等 元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的

希尔排序:

希尔排序是按照不同步长对元素进行插入排序 ,虽然一次插入排序是稳定的,不会改变相同元素的相对顺序,但在 不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以希尔排序是不稳定的

归并排序: 归并排序在归并的过程中,只有arr[i]<arr[i+1]的时候才会交换位置,如果两个元素相等则不会交换位置,所以它并不会破坏稳定性,归并排序是稳定的

快速排序: 快速排序需要一个基准值,在基准值的右侧找一个比基准值小的元素,在基准值的左侧找一个比基准值大的元素, 然后交换这两个元素,此时会破坏稳定性,所以快速排序是一种不稳定的算法

posted @ 2022-06-19 11:42  翀翀翀  阅读(23)  评论(0)    收藏  举报