快速排序
快速排序
快速排序是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一 部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序 过程可以递归进行,以此达到整个数据变成有序序列。
需求:
排序前:{6, 1, 2, 7, 9, 3, 4, 5, 8}
排序后:{1, 2, 3, 4, 5, 6, 7, 8, 9}
排序原理:
1.首先设定一个分界值,通过该分界值将数组分成左右两部分;
2.将大于或等于分界值的数据放到到数组右边,小于分界值的数据放到数组的左边。此时左边部分中各元素都小于 或等于分界值,而右边部分中各元素都大于或等于分界值;
3.然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两 部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。
4.重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当 左侧和右侧两个部分的数据排完序后,整个数组的排序也就完成了。

快速排序API设计:
| 类名 | Quick |
|---|---|
| 构造方法 | Quick() : 创建Quick对象 |
| 成员方法 | 1.public static void sort(Comparable[] a) : 对数组内的元素进行排序 2.private static void sort (Comparable[] a,int lo,int hi) : 对数组a中从索引lo到索引hi之间的元素进行排序 3.public static int partition(Comparable[] a,int lo,int hi) :对数组a中,从索引lo到所有hi之间的元素进行分组,并返回分组界限对应的索引 4.private static boolean less(Comparable v,Comparable w):判断v是否小于w 5.private static void exch(Comparable[] a,int i,int j) : 交换a数组,索引i和索引j处的值 |
快速排序实现代码:
import java.util.Arrays;
public class Quick {
//排序代码
public static void sort(Comparable[] a) {
int lo = 0;
int hi = a.length - 1;
sort(a, lo,hi);
}
private static void sort(Comparable[] a, int lo, int hi) {
if (hi<=lo){
return;
}
//对a数组中,从lo到hi的元素进行切分
int partition = partition(a, lo, hi); //返回的是分组的分界值所在的索引,分界值位置变换后的索引
//对左边分组中的元素进行排序
sort(a,lo,partition-1);
//对右边分组中的元素进行排序
sort(a,partition+1,hi);
}
public static int partition(Comparable[] a, int lo, int hi) {
Comparable key=a[lo];//把最左边的元素当做基准值
int left=lo;//定义一个左侧指针,初始指向最左边的元素
int right=hi+1;//定义一个右侧指针,初始指向左右侧的元素下一个位置
//进行切分
while(true){
//先从右往左扫描,找到一个比基准值小的元素
while(less(key,a[--right])){//循环停止,证明找到了一个比基准值小的元素
if (right==lo){
break;//已经扫描到最左边了,无需继续扫描
}
}
//再从左往右扫描,找一个比基准值大的元素
while(less(a[++left],key)){//循环停止,证明找到了一个比基准值大的元素
if (left==hi){
break;//已经扫描到了最右边了,无需继续扫描
}
}
if (left>=right){
//扫描完了所有元素,结束循环
break;
}else{
//交换left和right索引处的元素
exch(a,left,right);
}
}
//交换最后rigth索引处和基准值所在的索引处的值
exch(a,lo,right);
return right;//right就是切分的界限
}
/*
数组元素i和j交换位置
*/
private static void exch(Comparable[] a, int i, int j) {
Comparable t = a[i];
a[i] = a[j];
a[j] = t;
}
/*
比较v元素是否小于w元素
*/
private static boolean less(Comparable v, Comparable w) {
return v.compareTo(w) < 0;
}
//测试代码
public static void main(String[] args) throws Exception {
Integer[] arr = {6, 1, 2, 7, 9, 3, 4, 5, 8};
Quick.sort(arr);
System.out.println(Arrays.toString(arr));
}
}
2.4 排序的稳定性
稳定性的定义:
数组arr中有若干元素,其中A元素和B元素相等,并且A元素在B元素前面,如果使用某种排序算法排序后,能够保 证A元素依然在B元素的前面,可以说这个该算法是稳定的。

稳定性的意义:
如果一组数据只需要一次排序,则稳定性一般是没有意义的,如果一组数据需要多次排序,稳定性是有意义的。例 如要排序的内容是一组商品对象,第一次排序按照价格由低到高排序,第二次排序按照销量由高到低排序,如果第 二次排序使用稳定性算法,就可以使得相同销量的对象依旧保持着价格高低的顺序展现,只有销量不同的对象才需 要重新排序。这样既可以保持第一次排序的原有意义,而且可以减少系统开销。
第一次按照价格从低到高排序:
| 商品名称 | 价格 | 销量 |
|---|---|---|
| 三星Note | 3999 | 21 |
| 华为mate | 4999 | 65 |
| 华为p40 | 5999 | 65 |
| iPhone13 | 6899 | 32 |
第二次按照销量进行从高到低排序:
| 商品名称 | 价格 | 销量 |
|---|---|---|
| 华为mate | 3999 | 65 |
| 华为p40 | 4999 | 65 |
| iPhone13 | 5999 | 32 |
| 三星Note | 6899 | 21 |
常见排序算法的稳定性:
冒泡排序:
只有当arr[i]>arr[i+1]的时候,才会交换元素的位置,而相等的时候并不交换位置,所以冒泡排序是一种稳定排序算法。
选择排序:
选择排序是给每个位置选择当前元素最小的,例如有数据{5(1),8 ,5(2), 2, 9 },第一遍选择到的最小元素为2, 所以5(1)会和2进行交换位置,此时5(1)到了5(2)后面,破坏了稳定性,所以选择排序是一种不稳定的排序算法。
插入排序:
比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其 后面,否则一直往前找直到找到它该插入的位置。如果碰见一个和插入元素相等的,那么把要插入的元素放在相等 元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。
希尔排序:
希尔排序是按照不同步长对元素进行插入排序 ,虽然一次插入排序是稳定的,不会改变相同元素的相对顺序,但在 不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以希尔排序是不稳定的。
归并排序: 归并排序在归并的过程中,只有arr[i]<arr[i+1]的时候才会交换位置,如果两个元素相等则不会交换位置,所以它并不会破坏稳定性,归并排序是稳定的。
快速排序: 快速排序需要一个基准值,在基准值的右侧找一个比基准值小的元素,在基准值的左侧找一个比基准值大的元素, 然后交换这两个元素,此时会破坏稳定性,所以快速排序是一种不稳定的算法。

浙公网安备 33010602011771号