人工神经网络框架AForge学习(一)
本示例演示了单层人工神经网络的学习过程.
示例中采用了16条样本数据,3个分类,在经过7-20次的迭代后,误差值与期望最小误差(示例中为0)的差距变为最小.
1
using System;
2
using System.Collections.Generic;
3
using System.Text;
4
using System.IO;
5
6
using AForge;
7
using AForge.Neuro;
8
using AForge.Neuro.Learning;
9
using AForge.Controls;
10
11
namespace AspxOn.AForgeNeuroTest
12
{
13
class Program
14
{
15
static void Main(string[] args)
16
{
17
double[,] data = null;
18
int[] classes = null;
19
20
double[,] tempData = new double[200, 2];
21
int[] tempClass = new int[200];
22
23
double learnintRate = 0.1;
24
25
//最大和最小的X值
26
double minX = double.MaxValue;
27
double maxX = double.MinValue;
28
29
//样本数目统计
30
int samples = 0;
31
//分类数目统计
32
int classCount = 0;
33
int[] samplesPerClass = new int[10];
34
35
try
36
{
37
//准备训练样本数据
38
string s = "0.1,0.1,0;0.2,0.3,0;0.3,0.4,0;0.1,0.3,0;0.2,0.5,0;0.1,1,1;0.2,1.1,1;0.3,0.9,1;";
39
s+="0.4,0.8,1;0.2,0.9,1;1,0.4,2;0.9,0.5,2;0.8,0.6,2;0.9,0.4,2;1,0.5,2;1,0.3,2";
40
string[] ss = s.Split(';');
41
42
for (int i = 0; i < ss.Length; i++)
43
{
44
string str = ss[i];
45
string[] strs = str.Split(',');
46
47
//检查数组长度
48
if (strs.Length != 3)
49
throw new Exception("length error!");
50
51
//生成单词
52
tempData[samples, 0] = double.Parse(strs[0]);
53
tempData[samples, 1] = double.Parse(strs[1]);
54
//生成分类
55
tempClass[samples] = int.Parse(strs[2]);
56
57
//跳过分类如果分类值大于等于10
58
if (tempClass[samples] >= 10)
59
{
60
continue;
61
}
62
63
//计算不同分类的总数
64
if (tempClass[samples] >= classCount)
65
classCount += tempClass[samples] + 1;
66
67
//统计每个分类的样本数目
68
samplesPerClass[tempClass[samples]]++;
69
70
//寻找最小值
71
if (tempData[samples, 0] < minX)
72
minX = tempData[samples, 0];
73
//寻找最大值
74
if (tempData[samples, 0] > maxX)
75
maxX = tempData[samples, 0];
76
77
//样本数目累加
78
samples++;
79
80
}
81
82
data = new double[samples, 2];
83
Array.Copy(tempData, 0, data, 0, samples * 2);
84
classes = new int[samples];
85
Array.Copy(tempClass, 0, classes, 0, samples);
86
87
88
}
89
catch
90
{
91
throw new Exception("failed loading data!");
92
}
93
94
/*=============================开始训练=================================*/
95
96
//准备学习样本数据
97
double[][] input = new double[samples][];
98
double[][] output = new double[samples][];
99
100
for (int i = 0; i < samples; i++)
101
{
102
input[i] = new double[2];
103
output[i] = new double[classCount];
104
105
//设置输入值
106
input[i][0] = data[i, 0];
107
input[i][1] = data[i, 1];
108
//设置输出值
109
output[i][classes[i]] = 1;
110
111
}
112
113
//神经网络初始化,创建激活神经网络
114
ActivationNetwork network = new ActivationNetwork(new ThresholdFunction(), 2, classCount);
115
ActivationLayer layer = network[0];
116
//创建导师
117
PerceptronLearning teacher = new PerceptronLearning(network);
118
//设置学习比率
119
teacher.LearningRate = learnintRate;
120
121
//迭代次数
122
int iteration = 1;
123
//停止迭代标志
124
bool neetToStop = false;
125
//是否输出每次权重
126
bool showWeight = true;
127
128
try
129
{
130
//误差值
131
List<double> errors = new List<double>();
132
133
while (!neetToStop)
134
{
135
输出权重
148
149
//将本次误差添加到误差列表
150
double error = teacher.RunEpoch(input, output);
151
errors.Add(error);
152
//输出本次训练误差
153
Console.WriteLine("误差:" + error.ToString());
154
//输出当前迭代次数
155
Console.WriteLine("迭代次数:" + iteration);
156
Console.WriteLine("---------------------------------------------");
157
158
//如果误差等于0,停止训练
159
//此处可预设一个最小值,不一定非是0.当误差小于此最小值时,结束训练。
160
if (error == 0)
161
break;
162
163
164
iteration++;
165
}
166
}
167
catch
168
{
169
throw new Exception("error!");
170
}
171
172
/*=============================结束训练=================================*/
173
174
Console.ReadKey();
175
}
176
177
}
178
}
using System;2
using System.Collections.Generic;3
using System.Text;4
using System.IO;5

6
using AForge;7
using AForge.Neuro;8
using AForge.Neuro.Learning;9
using AForge.Controls;10

11
namespace AspxOn.AForgeNeuroTest12
{13
class Program14
{15
static void Main(string[] args)16
{17
double[,] data = null;18
int[] classes = null;19

20
double[,] tempData = new double[200, 2];21
int[] tempClass = new int[200];22

23
double learnintRate = 0.1;24

25
//最大和最小的X值26
double minX = double.MaxValue;27
double maxX = double.MinValue;28

29
//样本数目统计30
int samples = 0;31
//分类数目统计32
int classCount = 0;33
int[] samplesPerClass = new int[10];34

35
try36
{37
//准备训练样本数据38
string s = "0.1,0.1,0;0.2,0.3,0;0.3,0.4,0;0.1,0.3,0;0.2,0.5,0;0.1,1,1;0.2,1.1,1;0.3,0.9,1;";39
s+="0.4,0.8,1;0.2,0.9,1;1,0.4,2;0.9,0.5,2;0.8,0.6,2;0.9,0.4,2;1,0.5,2;1,0.3,2";40
string[] ss = s.Split(';');41

42
for (int i = 0; i < ss.Length; i++)43
{44
string str = ss[i];45
string[] strs = str.Split(',');46

47
//检查数组长度48
if (strs.Length != 3)49
throw new Exception("length error!");50

51
//生成单词52
tempData[samples, 0] = double.Parse(strs[0]);53
tempData[samples, 1] = double.Parse(strs[1]);54
//生成分类55
tempClass[samples] = int.Parse(strs[2]);56

57
//跳过分类如果分类值大于等于1058
if (tempClass[samples] >= 10)59
{60
continue;61
}62

63
//计算不同分类的总数64
if (tempClass[samples] >= classCount)65
classCount += tempClass[samples] + 1;66

67
//统计每个分类的样本数目68
samplesPerClass[tempClass[samples]]++;69

70
//寻找最小值71
if (tempData[samples, 0] < minX)72
minX = tempData[samples, 0];73
//寻找最大值74
if (tempData[samples, 0] > maxX)75
maxX = tempData[samples, 0];76

77
//样本数目累加78
samples++;79

80
}81

82
data = new double[samples, 2];83
Array.Copy(tempData, 0, data, 0, samples * 2);84
classes = new int[samples];85
Array.Copy(tempClass, 0, classes, 0, samples);86

87

88
}89
catch90
{91
throw new Exception("failed loading data!");92
}93

94
/*=============================开始训练=================================*/95

96
//准备学习样本数据97
double[][] input = new double[samples][];98
double[][] output = new double[samples][];99

100
for (int i = 0; i < samples; i++)101
{102
input[i] = new double[2];103
output[i] = new double[classCount];104

105
//设置输入值106
input[i][0] = data[i, 0];107
input[i][1] = data[i, 1];108
//设置输出值109
output[i][classes[i]] = 1;110

111
}112

113
//神经网络初始化,创建激活神经网络114
ActivationNetwork network = new ActivationNetwork(new ThresholdFunction(), 2, classCount);115
ActivationLayer layer = network[0];116
//创建导师117
PerceptronLearning teacher = new PerceptronLearning(network);118
//设置学习比率119
teacher.LearningRate = learnintRate;120

121
//迭代次数122
int iteration = 1;123
//停止迭代标志124
bool neetToStop = false;125
//是否输出每次权重126
bool showWeight = true;127

128
try129
{130
//误差值131
List<double> errors = new List<double>();132

133
while (!neetToStop)134
{135
输出权重148

149
//将本次误差添加到误差列表150
double error = teacher.RunEpoch(input, output);151
errors.Add(error);152
//输出本次训练误差153
Console.WriteLine("误差:" + error.ToString());154
//输出当前迭代次数155
Console.WriteLine("迭代次数:" + iteration);156
Console.WriteLine("---------------------------------------------");157

158
//如果误差等于0,停止训练159
//此处可预设一个最小值,不一定非是0.当误差小于此最小值时,结束训练。160
if (error == 0)161
break;162

163

164
iteration++;165
}166
}167
catch168
{169
throw new Exception("error!");170
}171

172
/*=============================结束训练=================================*/173
174
Console.ReadKey();175
}176

177
}178
}
输出结果如下:



浙公网安备 33010602011771号