[AcWing 1128] 信使


求起点到其他所有点的最短距离
堆优化 \(dijkstra\) (\(20 \ ms\))
复杂度 \((m \cdot log(n)) = 200 \times log(100) \approx 664\)
点击查看代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
const int N = 1e6 + 10;
const int INF = 0x3f3f3f3f;
int n, m;
int h[N], e[N], ne[N], w[N], idx;
int d[N];
bool st[N];
void add(int a, int b, int c)
{
e[idx] = b;
w[idx] = c;
ne[idx] = h[a];
h[a] = idx ++;
}
void dijkstra(int sp)
{
memset(d, 0x3f, sizeof d);
memset(st, false, sizeof st);
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, sp});
d[sp] = 0;
while (heap.size()) {
auto t = heap.top();
heap.pop();
auto v = t.second;
if (st[v])
continue;
st[v] = true;
for (int i = h[v]; i != -1; i = ne[i]) {
int j = e[i];
if (d[j] > d[v] + w[i]) {
d[j] = d[v] + w[i];
heap.push({d[j], j});
}
}
}
}
void solve()
{
cin >> n >> m;
memset(h, -1, sizeof h);
for (int i = 0; i < m; i ++) {
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
add(b, a, c);
}
dijkstra(1);
int res = 0;
for (int i = 2; i <= n; i ++)
res = max(res, d[i]);
cout << (res == INF ? -1 : res) << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
solve();
return 0;
}
- 堆优化 \(dijkstra\) 模板,最后 \(res\) 取所有距离的最大值
Floyd (\(40 \ ms\))
复杂度 \((n^3) = 100^3 = 1 \times 10^6\)
点击查看代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
const int N = 100 + 10;
const int INF = 0x3f3f3f3f;
int n, m;
int g[N][N];
void solve()
{
cin >> n >> m;
memset(g, 0x3f, sizeof g);
for (int i = 0; i < m; i ++) {
int a, b, c;
cin >> a >> b >> c;
g[a][b] = g[b][a] = min(g[a][b], c);
}
for (int k = 1; k <= n; k ++)
for (int i = 1; i <= n; i ++)
for (int j = 1; j <= n; j ++)
g[i][j] = min(g[i][j], g[i][k] + g[k][j]);
int res = 0;
for (int i = 2; i <= n; i ++)
res = max(res, g[1][i]);
cout << (res == INF ? -1 : res) << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
solve();
return 0;
}

浙公网安备 33010602011771号