[AcWing 1068] 环形石子合并


点击查看代码
#include<iostream>
#include<cstring>
using namespace std;
const int N = 410;
const int INF = 0x3f3f3f3f;
int n;
int w[N], s[N];
int f[N][N], g[N][N];
int main()
{
cin >> n;
for (int i = 1; i <= n; i ++) {
cin >> w[i];
w[i + n] = w[i];
}
for (int i = 1; i <= 2 * n; i ++)
s[i] = s[i - 1] + w[i];
memset(f, 0x3f, sizeof f);
memset(g, -0x3f, sizeof g);
for (int len = 1; len <= n; len ++)
for (int l = 1; l + len - 1 <= 2 * n; l ++) {
int r = l + len - 1;
if (len == 1) {
f[l][r] = g[l][r] = 0;
continue;
}
for (int k = l; k < r; k ++) {
f[l][r] = min(f[l][r], f[l][k] + f[k + 1][r] + s[r] - s[l - 1]);
g[l][r] = max(g[l][r], g[l][k] + g[k + 1][r] + s[r] - s[l - 1]);
}
}
int res1 = INF, res2 = -INF;
for (int i = 1; i <= n; i ++) {
res1 = min(res1, f[i][i + n - 1]);
res2 = max(res2, g[i][i + n - 1]);
}
cout << res1 << endl;
cout << res2 << endl;
return 0;
}
- 状态表示
\(f[i][j]\) 表示将第 \(i\) 堆石子到第 \(j\) 堆石子合并的最小代价
\(g[i][j]\) 表示将第 \(i\) 堆石子到第 \(j\) 堆石子合并的最大代价 - 状态计算
在 \([l,r]\) 区间任找一条分割线 \(k\),将区间分为两半
\(f[l][r] = min(f[l][k] + f[k + 1][r] + s[r] - s[l - 1])\)
\(g[l][r] = max(g[l][k] + g[k + 1][r] + s[r] - s[l - 1])\) - 环的处理
用一个和原数组相同的数组接到数组的末尾,使得数组的长度变为 \(2n\),所有环形的方案都可以映射到长度为 \(2n\) 的数组上

浙公网安备 33010602011771号