[AcWing 1068] 环形石子合并

image
image


点击查看代码
#include<iostream>
#include<cstring>

using namespace std;

const int N = 410;
const int INF = 0x3f3f3f3f;

int n;
int w[N], s[N];
int f[N][N], g[N][N];

int main()
{
    cin >> n;
    for (int i = 1; i <= n; i ++) {
        cin >> w[i];
        w[i + n] = w[i];
    }
    for (int i = 1; i <= 2 * n; i ++)
        s[i] = s[i - 1] + w[i];
    memset(f, 0x3f, sizeof f);
    memset(g, -0x3f, sizeof g);
    for (int len = 1; len <= n; len ++)
        for (int l = 1; l + len - 1 <= 2 * n; l ++) {
            int r = l + len - 1;
            if (len == 1) {
                f[l][r] = g[l][r] = 0;
                continue;
            }
            for (int k = l; k < r; k ++) {
                f[l][r] = min(f[l][r], f[l][k] + f[k + 1][r] + s[r] - s[l - 1]);
                g[l][r] = max(g[l][r], g[l][k] + g[k + 1][r] + s[r] - s[l - 1]);
            }
        }
    int res1 = INF, res2 = -INF;
    for (int i = 1; i <= n; i ++) {
        res1 = min(res1, f[i][i + n - 1]);
        res2 = max(res2, g[i][i + n - 1]);
    }
    cout << res1 << endl;
    cout << res2 << endl;
    return 0;
}

  1. 状态表示
    \(f[i][j]\) 表示将第 \(i\) 堆石子到第 \(j\) 堆石子合并的最小代价
    \(g[i][j]\) 表示将第 \(i\) 堆石子到第 \(j\) 堆石子合并的最大代价
  2. 状态计算
    \([l,r]\) 区间任找一条分割线 \(k\),将区间分为两半
    \(f[l][r] = min(f[l][k] + f[k + 1][r] + s[r] - s[l - 1])\)
    \(g[l][r] = max(g[l][k] + g[k + 1][r] + s[r] - s[l - 1])\)
  3. 环的处理
    用一个和原数组相同的数组接到数组的末尾,使得数组的长度变为 \(2n\),所有环形的方案都可以映射到长度为 \(2n\) 的数组上
posted @ 2022-07-07 22:03  wKingYu  阅读(38)  评论(0)    收藏  举报