
多重背包朴素做法 时间复杂度 \(O(n \cdot m \cdot s)\)
总体时间复杂度 $ 500 \times 6000 \times 10 = 3 \times 10^{7} $
点击查看代码
#include<iostream>
using namespace std;
const int N = 510, M = 6010;
int n, m;
int v[N], w[N], s[N];
int f[N][M];
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i ++) cin >> v[i] >> w[i] >> s[i];
for (int i = 1; i <= n; i ++)
for (int j = 0; j <= m; j ++)
for (int k = 0; k <= s[i] && k * v[i] <= j; k ++)
f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
cout << f[n][m] << endl;
return 0;
}
多重背包二进制优化 时间复杂度 \(O(n \cdot m \cdot log(s))\)
总体时间复杂度 $ 500 \times 6000 \times log(10) \approx 1 \times 10^{7} $
点击查看代码
#include<iostream>
using namespace std;
const int N = 1e5 + 10;
int n, m;
int v[N], w[N], cnt;
int f[N];
int main()
{
cin >> n >> m;
for (int i = 0; i < n; i ++) {
int a, b, s;
cin >> a >> b >> s;
int k = 1;
while (k <= s) {
cnt ++;
v[cnt] = a * k;
w[cnt] = b * k;
s -= k;
k *= 2;
}
if (s) {
cnt ++;
v[cnt] = a * s;
w[cnt] = b * s;
}
}
for (int i = 1; i <= cnt; i ++)
for (int j = m; j >= v[i]; j --)
f[j] = max(f[j], f[j - v[i]] + w[i]);
cout << f[m] << endl;
return 0;
}