[AcWing 6] 多重背包问题 III


点击查看代码
#include<iostream>
#include<cstring>
using namespace std;
const int N = 1010, M = 20010;
int n, m;
int v[N], w[N], s[N];
int f[M], g[M], q[M];
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i ++) cin >> v[i] >> w[i] >> s[i];
for (int i = 1; i <= n; i ++) {
memcpy(g, f, sizeof f);
for (int j = 0; j < v[i]; j ++) {
int hh = 0, tt = -1;
for (int k = j; k <= m; k += v[i]) {
if (hh <= tt && q[hh] < k - s[i] * v[i]) hh ++;
while (hh <= tt && g[q[tt]] - (q[tt] - j) / v[i] * w[i] <= g[k] - (k - j) / v[i] * w[i])
tt --;
q[++ tt] = k;
f[k] = g[q[hh]] + (k - q[hh]) / v[i] * w[i];
}
}
}
cout << f[m] << endl;
return 0;
}
- 单调队列优化
\(f[i][j] = max(f[i-1][j],f[i-1][j-v]+w,f[i-1][j-2 \cdot v]+2 \cdot w,\cdots,f[i-1][j-s \cdot v]+s \cdot w)\)
\(f[i][j-v] = max(f[i-1][j-v],f[i-1][j-2 \cdot v]+ w,\cdots,f[i-1][j-s \cdot v]+s \cdot w,f[i-1][j-3 \cdot v] + 2 \cdot w,f[i-1][j- s \cdot v] + (s-1) \cdot w ,f[i-1][j-(s+1) \cdot v] + s \cdot w)\)
\(\cdots \cdots\)
观察 \(f[i][j]\) 和 \(f[i][j-v]\) 可以发现,除去偏移量 \(w\),剩下的部分 \(f[i-1][j-v], f[i-1][j-2 \cdot v], \cdots, f[i-1][j - s \cdot v]\) 是相同的,可以用单调队列来维护一段区间的最大值,将更新这一步的复杂度降低到线性

浙公网安备 33010602011771号