
预处理 复杂度 $ O(n \cdot log(n)) $
总体复杂度 $ 10^{5} \times log(10^{9}) = 3 \times 10^{6} $
点击查看代码
#include<iostream>
using namespace std;
typedef long long LL;
const int N = 1e5 + 10, mod = 1e9 + 7;
int fact[N], infact[N];
int qmi(int a, int k, int p)
{
int res = 1;
while (k) {
if (k & 1) res = (LL) res * a % p;
k >>= 1;
a = (LL) a * a % p;
}
return res;
}
int main()
{
fact[0] = infact[0] = 1;
for (int i = 1; i < N; i ++) {
fact[i] = (LL) fact[i - 1] * i % mod;
infact[i] = (LL) infact[i - 1] * qmi(i, mod - 2, mod) % mod;
}
int n;
cin >> n;
while (n --) {
int a, b;
cin >> a >> b;
printf("%d\n", (LL) fact[a] * infact[b] % mod * infact[a - b] % mod);
}
return 0;
}
- 先求出阶乘和阶乘的逆元,求逆元时用快速幂;
- 每当两个变量相乘就要取一次模;