
复杂度 \(O(n^{2})\)
点击查看代码
#include<iostream>
#include<cstring>
using namespace std;
const int N = 510;
int n, m;
int g[N][N], dist[N];
bool st[N];
int dijkstra()
{
memset(dist, 0x3f, sizeof(dist));
dist[1] = 0;
for (int i = 0; i < n; i ++) {
int t = -1;
for (int j = 1; j <= n; j ++) {
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
}
for (int i = 1; i <= n; i ++) {
dist[i] = min(dist[i], dist[t] + g[t][i]);
}
st[t] = true;
}
if (dist[n] == 0x3f3f3f3f) return -1;
else return dist[n];
}
int main()
{
cin >> n >> m;
memset(g, 0x3f, sizeof(g));
while (m --) {
int a, b, c;
cin >> a >> b >> c;
g[a][b] = min(g[a][b], c);
}
cout << dijkstra() << endl;
return 0;
}
- 处理重边和自环的方法:对于重边,只保留权值最小的边,对于自环,不需要处理;(权值是正值,自环肯定不是最短路)
- 朴素 dijkstra 模板;
- 最外层循环 i < n -1 也可,因为在 i = n - 1 时,会将 dist[ n ] 更新为最小值;(n 还没有被访问)