已信任
Jupyter 服务器: 本地
Python 3: Not Started
[11]
import pandas as pd
import numpy as np
[13]
df = pd.DataFrame({
'a':pd.date_range(start='2021-07-14', periods=5, freq='D'),
'b':[1,2,3,4,5],
'c':[0.1,0.2,0.3,0.4,0.5]
})
df
a b c
0 2021-07-14 1 0.1
1 2021-07-15 2 0.2
2 2021-07-16 3 0.3
3 2021-07-17 4 0.4
4 2021-07-18 5 0.5
[14]
# 重建索引reindex
df.reindex(index=[0,2,4], columns=['a','b','d'])
a b d
0 2021-07-14 1 NaN
2 2021-07-16 3 NaN
4 2021-07-18 5 NaN
[16]
df.reindex(index=[0,5,6], columns=['a','b','c'],method='ffill')# 向前填充,5向前是4,所以为 5 0.5
a b c
0 2021-07-14 1 0.1
5 2021-07-18 5 0.5
6 2021-07-18 5 0.5
[18]
df1 = pd.DataFrame({
'g':pd.date_range(start='2021-07-14', periods=5, freq='D'),
'b':[1,2,3,4,5],
'c':[0.1,0.2,0.3,0.4,0.5]
})
df1
g b c
0 2021-07-14 1 0.1
1 2021-07-15 2 0.2
2 2021-07-16 3 0.3
3 2021-07-17 4 0.4
4 2021-07-18 5 0.5
[19]
# 将df索引修改为像df1的索引
df.reindex_like(df1)
g b c
0 NaN 1 0.1
1 NaN 2 0.2
2 NaN 3 0.3
3 NaN 4 0.4
4 NaN 5 0.5
[20]
df1
g b c
0 2021-07-14 1 0.1
1 2021-07-15 2 0.2
2 2021-07-16 3 0.3
3 2021-07-17 4 0.4
4 2021-07-18 5 0.5
[22]
# 重命名索引
df1.rename(columns=({'g':'f','b':'hello','c':'world'}))
f hello world
0 2021-07-14 1 0.1
1 2021-07-15 2 0.2
2 2021-07-16 3 0.3
3 2021-07-17 4 0.4
4 2021-07-18 5 0.5
[-]