一样的题,简单面积并,直接套模版就行
#include <queue> #include <stack> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <iostream> #include <limits.h> #include <string.h> #include <algorithm> #define MID(x,y) ((x+y)>>1) #define L(x) (x<<1) #define R(x) (x<<1|1) using namespace std; const int MAX = 10100; struct Rec{int x,y1,y2;int flag;}; struct Tnode{int l,r,cover; int length;}; Tnode node[MAX*4]; Rec rr[MAX]; int y[MAX],k; void add_line(int x1,int y1,int x2,int y2) { rr[k].x = x1; rr[k].y1 = y1; rr[k].y2 = y2; rr[k].flag = 1; y[k++] = y1; rr[k].x = x2; rr[k].y1 = y1; rr[k].y2 = y2; rr[k].flag = -1; y[k++] = y2; } void init() { memset(node,0,sizeof(node)); } bool cmp(Rec a,Rec b) { return a.x < b.x; } void build(int t,int l,int r) { node[t].l = l; node[t].r = r; if( l == r - 1 ) return ; int mid = MID(l,r); build(R(t),mid,r); build(L(t),l,mid); } void len(int t) { if( node[t].cover > 0 ) node[t].length = y[node[t].r] - y[node[t].l]; else if( node[t].l == node[t].r - 1 ) node[t].length = 0.0; else node[t].length = node[R(t)].length + node[L(t)].length; } void update(int t,Rec p) { if( y[node[t].l] == p.y1 && y[node[t].r] == p.y2 ) { node[t].cover += p.flag; len(t); return ; } int mid = MID(node[t].l,node[t].r); if( p.y1>=y[mid]) update(R(t),p); else if( p.y2<=y[mid] ) update(L(t),p); else { Rec tmp = p; tmp.y2 = y[mid]; update(L(t),tmp); tmp = p; tmp.y1 = y[mid]; update(R(t),tmp); } len(t); } long long solve(int n,int cnt) { init(); build(1,0,cnt-1); long long sum = 0; update(1,rr[0]); for(int i=1; i<n; i++) { sum += (rr[i].x - rr[i-1].x)*node[1].length; update(1,rr[i]); } return sum; } int main() { int n; int ind = 1; int x1,x2,y1,y2; while( ~scanf("%d%d%d%d",&x1,&y1,&x2,&y2) ) { if(x1==-1)break; k=0; add_line(x1,y1,x2,y2); while(scanf("%d%d%d%d",&x1,&y1,&x2,&y2)&&x1!=-1) { add_line(x1,y1,x2,y2); } sort(rr,rr+k,cmp); sort(y,y+k); int t = k; k = unique(y,y+k) - y; long long area = solve(t,k); printf("%lld\n",area); } return 0; }