[Hdu3507]Print Article(斜率优化)

Description

题意:给N个数,按顺序全部取走,每次取一段连续的区间,代价为\((S[i]-S[j])^2+M\)

其中M为一个给定的常数,\(S[i]\)为前缀和

\(N\leq 500000\)

Solution

常规的方程:\(dp[i]=min\{dp[j]+(S[i]-S[j])^2+M\}, j<i\)

\(O(n^2)\)是过不了50万的,用斜率优化

设有\(k<j<i\) 使得决策j更优,那么有

\(dp[j]+(S[i]-S[j])^2+M<dp[k]+(S[i]-S[k])^2+M\)

整理得 \(\frac{(dp[j]+S[j]^2)-(dp[k]+S[k]^2)}{(S[j]-S[k])}<2*S[i]\)

\(f[i]=dp[i]+S[i]^2\),所以有\(\frac{f[j]-f[k]}{s[j]-s[k]}<2*S[i]\)

此时决策j更优,反之决策k优

易证\(f[i]\)也单调递增,所以可用单调队列维护

Code

#include <cstdio>
#include <algorithm>
#define N 500010
#define squ(x) ((x)*(x))
using namespace std;

int n,M,l,r,q[N],s[N],dp[N];

inline int read(){
	int x=0,f=1;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}

inline int f(int k,int j){return dp[j]+squ(s[j])-(dp[k]+squ(s[k]));}
inline int g(int k,int j){return s[j]-s[k];}

void DP(){
	l=1,r=0;q[++r]=0;dp[0]=0;
	for(int i=1;i<=n;++i){
		while(l<r&&f(q[l],q[l+1])<=2*s[i]*g(q[l],q[l+1])) l++;
		int j=q[l];
		dp[i]=dp[j]+squ(s[i]-s[j])+M;
		while(l<r&&f(q[r],i)*g(q[r-1],q[r])<f(q[r-1],q[r])*g(q[r],i)) r--;//保证斜率单调
		q[++r]=i;
	}
}

int main(){
  	while(~scanf("%d%d",&n,&M)){
		for(int i=1;i<=n;++i) s[i]=s[i-1]+read();
		DP();
		printf("%d\n",dp[n]);
	}
	return 0;
}
posted @ 2018-02-02 11:27  void_f  阅读(172)  评论(0编辑  收藏  举报