数字符号概述

Numbers

  • \(x\): Scalar
  • \(\mathbf{x}\): Vector
  • \(\mathbf{X}\): Matrix
  • \(\mathsf{X}\): Tensor
  • \(\mathbf{I}\): Identity matrix
  • \(x_i\), \([\mathbf{x}]_i\): \(i\)-th element of vector \(\mathbf{x}\)
  • \(x_{ij}\), \([\mathbf{X}]_{ij}\): Element at \(i\)-th row, \(j\)-th column of matrix \(\mathbf{X}\)

Set Theory

  • \(\mathcal{X}\): Set
  • \(\mathbb{Z}\): Set of integers
  • \(\mathbb{R}\): Set of real numbers
  • \(\mathbb{R}^n\): Set of \(n\)-dimensional real vectors
  • \(\mathbb{R}^{a\times b}\): Set of real matrices with \(a\) rows and \(b\) columns
  • \(\mathcal{A}\cup\mathcal{B}\): Union of sets \(\mathcal{A}\) and \(\mathcal{B}\)
  • \(\mathcal{A}\cap\mathcal{B}\): Intersection of sets \(\mathcal{A}\) and \(\mathcal{B}\)
  • \(\mathcal{A}\setminus\mathcal{B}\): Relative complement of set \(\mathcal{B}\) in set \(\mathcal{A}\)

Functions and Operators

  • \(f(\cdot)\): Function
  • \(\log(\cdot)\): Natural logarithm
  • \(\exp(\cdot)\): Exponential function
  • \(\mathbf{1}_\mathcal{X}\): Indicator function
  • \((\cdot)^\top\): Transpose of vector or matrix
  • \(\mathbf{X}^{-1}\): Inverse of matrix
  • \(\odot\): Element-wise multiplication
  • \([\cdot, \cdot]\): Concatenation
  • \(|\mathcal{X}|\): Cardinality of set
  • \(\|\cdot\|_p\): \(L_p\) norm
  • \(\|\cdot\|\): \(L_2\) norm
  • \(\langle \mathbf{x}, \mathbf{y} \rangle\): Dot product of vectors \(\mathbf{x}\) and \(\mathbf{y}\)
  • \(\sum\): Summation
  • \(\prod\): Product
  • \(\stackrel{\mathrm{def}}{=}\): Definition

Calculus

  • \(\frac{dy}{dx}\): Derivative of \(y\) with respect to \(x\)
  • \(\frac{\partial y}{\partial x}\): Partial derivative of \(y\) with respect to \(x\)
  • \(\nabla_{\mathbf{x}} y\): Gradient of \(y\) with respect to \(\mathbf{x}\)
  • \(\int_a^b f(x) \;dx\): Definite integral of \(f\) from \(a\) to \(b\) with respect to \(x\)
  • \(\int f(x) \;dx\): Indefinite integral of \(f\) with respect to \(x\)

Probability and Information Theory

  • \(P(\cdot)\): Probability distribution
  • \(z \sim P\): Random variable \(z\) follows distribution \(P\)
  • \(P(X \mid Y)\): Conditional probability of \(X\) given \(Y\)
  • \(p(x)\): Probability density function
  • \({E}_{x} [f(x)]\): Expectation of function \(f\) with respect to \(x\)
  • \(X \perp Y\): Random variables \(X\) and \(Y\) are independent
  • \(X \perp Y \mid Z\): Random variables \(X\) and \(Y\) are conditionally independent given \(Z\)
  • \(\mathrm{Var}(X)\): Variance of random variable \(X\)
  • \(\sigma_X\): Standard deviation of random variable \(X\)
  • \(\mathrm{Cov}(X, Y)\): Covariance of random variables \(X\) and \(Y\)
  • \(\rho(X, Y)\): Correlation of random variables \(X\) and \(Y\)
  • \(H(X)\): Entropy of random variable \(X\)
  • \(D_{\mathrm{KL}}(P\|Q)\): Kullback-Leibler divergence between \(P\) and \(Q\)

Complexity

  • \(\mathcal{O}\): Big O notation

数字

\(x\) 标量
\(X\) 向量
\(\Chi\) 矩阵

image
image
image
image
image
image

posted @ 2023-05-11 15:05  VipSoft  阅读(38)  评论(0)    收藏  举报