数字符号概述
Numbers
- \(x\): Scalar
- \(\mathbf{x}\): Vector
- \(\mathbf{X}\): Matrix
- \(\mathsf{X}\): Tensor
- \(\mathbf{I}\): Identity matrix
- \(x_i\), \([\mathbf{x}]_i\): \(i\)-th element of vector \(\mathbf{x}\)
- \(x_{ij}\), \([\mathbf{X}]_{ij}\): Element at \(i\)-th row, \(j\)-th column of matrix \(\mathbf{X}\)
Set Theory
- \(\mathcal{X}\): Set
- \(\mathbb{Z}\): Set of integers
- \(\mathbb{R}\): Set of real numbers
- \(\mathbb{R}^n\): Set of \(n\)-dimensional real vectors
- \(\mathbb{R}^{a\times b}\): Set of real matrices with \(a\) rows and \(b\) columns
- \(\mathcal{A}\cup\mathcal{B}\): Union of sets \(\mathcal{A}\) and \(\mathcal{B}\)
- \(\mathcal{A}\cap\mathcal{B}\): Intersection of sets \(\mathcal{A}\) and \(\mathcal{B}\)
- \(\mathcal{A}\setminus\mathcal{B}\): Relative complement of set \(\mathcal{B}\) in set \(\mathcal{A}\)
Functions and Operators
- \(f(\cdot)\): Function
- \(\log(\cdot)\): Natural logarithm
- \(\exp(\cdot)\): Exponential function
- \(\mathbf{1}_\mathcal{X}\): Indicator function
- \((\cdot)^\top\): Transpose of vector or matrix
- \(\mathbf{X}^{-1}\): Inverse of matrix
- \(\odot\): Element-wise multiplication
- \([\cdot, \cdot]\): Concatenation
- \(|\mathcal{X}|\): Cardinality of set
- \(\|\cdot\|_p\): \(L_p\) norm
- \(\|\cdot\|\): \(L_2\) norm
- \(\langle \mathbf{x}, \mathbf{y} \rangle\): Dot product of vectors \(\mathbf{x}\) and \(\mathbf{y}\)
- \(\sum\): Summation
- \(\prod\): Product
- \(\stackrel{\mathrm{def}}{=}\): Definition
Calculus
- \(\frac{dy}{dx}\): Derivative of \(y\) with respect to \(x\)
- \(\frac{\partial y}{\partial x}\): Partial derivative of \(y\) with respect to \(x\)
- \(\nabla_{\mathbf{x}} y\): Gradient of \(y\) with respect to \(\mathbf{x}\)
- \(\int_a^b f(x) \;dx\): Definite integral of \(f\) from \(a\) to \(b\) with respect to \(x\)
- \(\int f(x) \;dx\): Indefinite integral of \(f\) with respect to \(x\)
Probability and Information Theory
- \(P(\cdot)\): Probability distribution
- \(z \sim P\): Random variable \(z\) follows distribution \(P\)
- \(P(X \mid Y)\): Conditional probability of \(X\) given \(Y\)
- \(p(x)\): Probability density function
- \({E}_{x} [f(x)]\): Expectation of function \(f\) with respect to \(x\)
- \(X \perp Y\): Random variables \(X\) and \(Y\) are independent
- \(X \perp Y \mid Z\): Random variables \(X\) and \(Y\) are conditionally independent given \(Z\)
- \(\mathrm{Var}(X)\): Variance of random variable \(X\)
- \(\sigma_X\): Standard deviation of random variable \(X\)
- \(\mathrm{Cov}(X, Y)\): Covariance of random variables \(X\) and \(Y\)
- \(\rho(X, Y)\): Correlation of random variables \(X\) and \(Y\)
- \(H(X)\): Entropy of random variable \(X\)
- \(D_{\mathrm{KL}}(P\|Q)\): Kullback-Leibler divergence between \(P\) and \(Q\)
Complexity
- \(\mathcal{O}\): Big O notation
数字
\(x\) 标量
\(X\) 向量
\(\Chi\) 矩阵






本文来自博客园,作者:VipSoft 转载请注明原文链接:https://www.cnblogs.com/vipsoft/p/17391092.html
 
                     
                    
                 
                    
                 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号