【Tool】 深度学习常用工具
1. caffe 网络结构可视化
http://ethereon.github.io/netscope/quickstart.html
将网络结构复制粘贴到左侧的编辑框,按Shift+Enter就可以显示出你的网络结构

2. caffe计算图片的均值
使用caffe自带的均值计算工具
./build/tools/compute_image_mean ROOT_OF_IMAGES ROOT_TO_PLACE_MEAN_FILE
第一个参数:需要计算均值的图片路径,格式为LMDB训练数据
第二个参数:计算出来的结果保存路径
./build/tools/compute_image_mean project/SqueezeNet/SqueezeNet_v1.0/test_lmdb project/SqueezeNet/SqueezeNet_v1.0/test_mean.binaryproto
python格式的均值计算
先用LMDB格式数据,计算出二进制格式均值,然后转换成python格式均值
#!/usr/bin/env python
import numpy as np
import sys,caffe
if len(sys.argv)!=3:
print "Usage: python convert_mean.py mean.binaryproto mean.npy"
sys.exit()
blob = caffe.proto.caffe_pb2.BlobProto()
bin_mean = open( sys.argv[1] , 'rb' ).read()
blob.ParseFromString(bin_mean)
arr = np.array( caffe.io.blobproto_to_array(blob) )
npy_mean = arr[0]
np.save( sys.argv[2] , npy_mean )
脚本保存为convert_mean.py
调用格式:
sudo python convert_mean.py mean.binaryproto mean.npy
mean.npy是我们需要的python格式二进制文件
3. 可视化训练过程中的 training/testing loss
- NVIDIA-DIGITS: caffe训练可视化工具(数据准备,模型选择,学习曲线可视化,多GPU训练
- 训练时 --solver=solver.ptototxt 2>&1 | tee train.log, 然后使用 ./tools/extra/parse_log.py train.log将其转为两个csv 文件分别包括train loss和test loss, 然后使用以下脚本画图:
import pandas as pd
from matplotlib import *
from matplotlib.pyplot import *
train_log = pd.read_csv("./lenet_train.log.train")
test_log = pd.read_csv("./lenet_train.log.test")
_, ax1 = subplots(figsize=(15, 10))
ax2 = ax1.twinx()
ax1.plot(train_log["NumIters"], train_log["loss"], alpha=0.4)
ax1.plot(test_log["NumIters"], test_log["loss"], 'g')
ax2.plot(test_log["NumIters"], test_log["acc"], 'r')
ax1.set_xlabel('iteration')
ax1.set_ylabel('train loss')
ax2.set_ylabel('test accuracy')
savefig("./train_test_image.png") #save image as png

浙公网安备 33010602011771号