题目地址

Given a set of N (>1) positive integers, you are supposed to partition them into two disjoint sets A
​1
​​ and A
​2
​​ of n
​1
​​ and n
​2
​​ numbers, respectively. Let S
​1
​​ and S
​2
​​ denote the sums of all the numbers in A
​1
​​ and A
​2
​​ , respectively. You are supposed to make the partition so that ∣n
​1
​​ −n
​2
​​ ∣ is minimized first, and then ∣S
​1
​​ −S
​2
​​ ∣ is maximized.

Input Specification:
Each input file contains one test case. For each case, the first line gives an integer N (2≤N≤10
​5
​​ ), and then N positive integers follow in the next line, separated by spaces. It is guaranteed that all the integers and their sum are less than 2
​31
​​ .

Output Specification:
For each case, print in a line two numbers: ∣n
​1
​​ −n
​2
​​ ∣ and ∣S
​1
​​ −S
​2
​​ ∣, separated by exactly one space.

Sample Input 1:
10
23 8 10 99 46 2333 46 1 666 555

Sample Output 1:
0 3611

Sample Input 2:
13
110 79 218 69 3721 100 29 135 2 6 13 5188 85

Sample Output 2:
1 9359

#include <iostream>
#include <vector>
#include<algorithm>
#include <cmath>
#include<map>
#include<cstring>
#include<queue>
#include<string>
#include<set>
#include<stack>
using namespace std;
typedef long long ll;
const int maxn=100010,inf=100000000;
int main(){
    int n;ll a[maxn],ans=0;
    cin>>n;
    for(int i=0;i<n;i++){
        cin>>a[i];
    }
    sort(a,a+n);
    if(n%2==0)  cout<<"0 ";
    else cout<<"1 ";
    for(int i=0;i<n/2;i++){
            ans-=a[i];
        }
    for(int i=n/2;i<n;i++) ans+=a[i];
    cout<<ans<<endl;
}