题目地址

The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.

Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (≤400), K (≤N) and P (1<P≤7). The numbers in a line are separated by a space.

Output Specification:
For each case, if the solution exists, output in the format:

N = n[1]^P + ... n[K]^P

where n[i] (i = 1, ..., K) is the i-th factor. All the factors must be printed in non-increasing order.

Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 12
​2
​​ +4
​2
​​ +2
​2
​​ +2
​2
​​ +1
​2
​​ , or 11
​2
​​ +6
​2
​​ +2
​2
​​ +2
​2
​​ +2
​2
​​ , or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a
​1
​​ ,a
​2
​​ ,⋯,a
​K
​​ } is said to be larger than { b
​1
​​ ,b
​2
​​ ,⋯,b
​K
​​ } if there exists 1≤L≤K such that a
​i
​​ =b
​i
​​ for i<L and a
​L
​​ >b
​L
​​ .

If there is no solution, simple output Impossible.

Sample Input 1:
169 5 2

Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2

Sample Input 2:
169 167 3

Sample Output 2:
Impossible

#include<iostream>
#include<algorithm>
#include<vector>
#include<stdlib.h>
#include<math.h>
using namespace std;
vector<int> fac,ans,temp;
int n,k,p,max_fac_sum=-1;
void dfs(int index,int now_k,int sum,int fac_sum){
    if(sum==n&&now_k==k){           //因子数量到达要求,项和恰好为n到达递归终点;
        if(fac_sum>max_fac_sum){            //所有满足的因子,贪心要底数更大的;不判断少五分;
            ans=temp;max_fac_sum=fac_sum;
        }
        return;
    }
    if(sum>n||now_k>k||index<1) return;          //递归终点,数量超过要求,项和超过要求,某项底数变成0;
    temp.push_back(index);          //优先把最大的底数全部放入temp,然后一项一项拿出,将次等底数填入;
    dfs(index,now_k+1,sum+fac[index],fac_sum+index);       //不管判断结果如何,上面有递归终点和大小判断,只需枚举就行;
    temp.pop_back();
    dfs(index-1,now_k,sum,fac_sum);     //拿出一项,填入次等底数,总数量不变;
}
int main(){
    scanf("%d%d%d",&n,&k,&p);
    int i=0,t=0;
    while(t<=n){
        fac.push_back(t);t=pow(++i,p);        //pow ,no 
    }
    dfs(fac.size()-1,0,0,0);
    if(max_fac_sum==-1) printf("Impossible\n");
    else{
        printf("%d = %d^%d",n,ans[0],p);
        for(int i=1;i<ans.size();i++){
            printf(" + %d^%d",ans[i],p);
        }
    }
}