1021 Deepest Root (25分)
A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤10
4
) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N−1 lines follow, each describes an edge by given the two adjacent nodes' numbers.
Output Specification:
For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print Error: K components where K is the number of connected components in the graph.
Sample Input 1:
5
1 2
1 3
1 4
2 5
Sample Output 1:
3
4
5
Sample Input 2:
5
1 3
1 4
2 5
3 4
Sample Output 2:
Error: 2 components
作者: CHEN, Yue
单位: 浙江大学
时间限制: 2000 ms
内存限制: 64 MB
#include <iostream>
#include <vector>
#include<algorithm>
#include <cmath>
#include<map> //要改unordered;
#include<string>
#include<set>
#include<cstring>
using namespace std;
const int maxn=10010;
vector<int>v[maxn];int vis[maxn]={0};set<int>ans[maxn];
int n,max_dep=-1;
void dfs(int idx,int dep,int r_i){ //dfs带着pre优化,只要让他不走回头路就可以了;递归函数pre为当前idx;这样就不用循环访问dfs了;
if(vis[idx]) return;
ans[dep].insert(r_i);
if(dep>max_dep){
max_dep=dep;
}
vis[idx]=1;
for(int i=0;i<v[idx].size();i++) {
dfs(v[idx][i],dep+1,r_i);
}
}
void dfs1(int idx){
if(vis[idx]) return;
vis[idx]=1;
for(int i=0;i<v[idx].size();i++) dfs1(v[idx][i]);
}
int main(){
cin>>n;int v1,v2;
for(int i=0;i<n-1;i++){
cin>>v1>>v2;
v[v1].push_back(v2);
v[v2].push_back(v1);
}
int flag=0;
for(int i=1;i<=n;i++){
if(vis[i])continue;
flag++;dfs1(i);
}
if(flag>1){
printf("Error: %d components",flag);return 0;
}
for(int i=1;i<=n;i++){
memset(vis,0,sizeof(vis));
dfs(i,0,i);
}
for(set<int>::iterator it=ans[max_dep].begin();it!=ans[max_dep].end();it++) cout<<*it<<endl;
}

浙公网安备 33010602011771号