ZIP压缩与解压类库分享

ZIP压缩与解压类库分享

简介

适用于win32/64以及win-ce平台,支持Unicode。

版权说明

ZIP UTILS

by Lucian Wischik, June 2004 - July 2005

解压调用示例

// For unzipping, add "unzip.cpp" to your project. Then, for example,
// 步骤1:包含unzip.h头文件
#include "unzip.h"

// 步骤2:打开zip文件
HZIP hz = OpenZip("c:\\stuff.zip",0);
ZIPENTRY ze; 
GetZipItem(hz,-1,&ze);
int numitems=ze.index;
// 步骤3:解压文件
for (int i=0; i<numitems; i++)
{ 
    GetZipItem(hz,i,&ze);
 	UnzipItem(hz,i,ze.name);
}
// 步骤4:关闭zip文件,释放句柄
CloseZip(hz);
  1. 压缩调用示例
/**
 * For zipping, add "zip.cpp" to your project. (You can add just one of
 * zip/unzip, or both; they function independently and also co-exist.)
 */
// 步骤1:包含zip.h
#include "zip.h"
// 步骤2:创建并打开zip文件
HZIP hz = CreateZip("c:\\simple1.zip",0);
// 步骤3:把数据写入zip
ZipAdd(hz,"znsimple.bmp", "c:\\simple.bmp");
ZipAdd(hz,"znsimple.txt", "c:\\simple.txt");
// 步骤4:关闭zip文件,释放句柄
CloseZip(hz);

ZIP压缩头文件

#ifndef _zip_H
#define _zip_H


// ZIP functions -- for creating zip files
// This file is a repackaged form of the Info-Zip source code available
// at www.info-zip.org. The original copyright notice may be found in
// zip.cpp. The repackaging was done by Lucian Wischik to simplify and
// extend its use in Windows/C++. Also to add encryption and unicode.


#ifndef _unzip_H
DECLARE_HANDLE(HZIP);
#endif
// An HZIP identifies a zip file that is being created

typedef DWORD ZRESULT;
// return codes from any of the zip functions. Listed later.



HZIP CreateZip(const TCHAR *fn, const char *password);
HZIP CreateZip(void *buf, unsigned int len, const char *password);
HZIP CreateZipHandle(HANDLE h, const char *password);
// CreateZip - call this to start the creation of a zip file.
// As the zip is being created, it will be stored somewhere:
// to a pipe:              CreateZipHandle(hpipe_write);
// in a file (by handle):  CreateZipHandle(hfile);
// in a file (by name):    CreateZip("c:\\test.zip");
// in memory:              CreateZip(buf, len);
// or in pagefile memory:  CreateZip(0, len);
// The final case stores it in memory backed by the system paging file,
// where the zip may not exceed len bytes. This is a bit friendlier than
// allocating memory with new[]: it won't lead to fragmentation, and the
// memory won't be touched unless needed. That means you can give very
// large estimates of the maximum-size without too much worry.
// As for the password, it lets you encrypt every file in the archive.
// (This api doesn't support per-file encryption.)
// Note: because pipes don't allow random access, the structure of a zipfile
// created into a pipe is slightly different from that created into a file
// or memory. In particular, the compressed-size of the item cannot be
// stored in the zipfile until after the item itself. (Also, for an item added
// itself via a pipe, the uncompressed-size might not either be known until
// after.) This is not normally a problem. But if you try to unzip via a pipe
// as well, then the unzipper will not know these things about the item until
// after it has been unzipped. Therefore: for unzippers which don't just write
// each item to disk or to a pipe, but instead pre-allocate memory space into
// which to unzip them, then either you have to create the zip not to a pipe,
// or you have to add items not from a pipe, or at least when adding items
// from a pipe you have to specify the length.
// Note: for windows-ce, you cannot close the handle until after CloseZip.
// but for real windows, the zip makes its own copy of your handle, so you
// can close yours anytime.


ZRESULT ZipAdd(HZIP hz, const TCHAR *dstzn, const TCHAR *fn);
ZRESULT ZipAdd(HZIP hz, const TCHAR *dstzn, void *src, unsigned int len);
ZRESULT ZipAddHandle(HZIP hz, const TCHAR *dstzn, HANDLE h);
ZRESULT ZipAddHandle(HZIP hz, const TCHAR *dstzn, HANDLE h, unsigned int len);
ZRESULT ZipAddFolder(HZIP hz, const TCHAR *dstzn);
// ZipAdd - call this for each file to be added to the zip.
// dstzn is the name that the file will be stored as in the zip file.
// The file to be added to the zip can come
// from a pipe:  ZipAddHandle(hz,"file.dat", hpipe_read);
// from a file:  ZipAddHandle(hz,"file.dat", hfile);
// from a filen: ZipAdd(hz,"file.dat", "c:\\docs\\origfile.dat");
// from memory:  ZipAdd(hz,"subdir\\file.dat", buf,len);
// (folder):     ZipAddFolder(hz,"subdir");
// Note: if adding an item from a pipe, and if also creating the zip file itself
// to a pipe, then you might wish to pass a non-zero length to the ZipAddHandle
// function. This will let the zipfile store the item's size ahead of the
// compressed item itself, which in turn makes it easier when unzipping the
// zipfile from a pipe.

ZRESULT ZipGetMemory(HZIP hz, void **buf, unsigned long *len);
// ZipGetMemory - If the zip was created in memory, via ZipCreate(0,len),
// then this function will return information about that memory block.
// buf will receive a pointer to its start, and len its length.
// Note: you can't add any more after calling this.

ZRESULT CloseZip(HZIP hz);
// CloseZip - the zip handle must be closed with this function.

unsigned int FormatZipMessage(ZRESULT code, TCHAR *buf, unsigned int len);
// FormatZipMessage - given an error code, formats it as a string.
// It returns the length of the error message. If buf/len points
// to a real buffer, then it also writes as much as possible into there.



// These are the result codes:
#define ZR_OK         0x00000000     // nb. the pseudo-code zr-recent is never returned,
#define ZR_RECENT     0x00000001     // but can be passed to FormatZipMessage.
// The following come from general system stuff (e.g. files not openable)
#define ZR_GENMASK    0x0000FF00
#define ZR_NODUPH     0x00000100     // couldn't duplicate the handle
#define ZR_NOFILE     0x00000200     // couldn't create/open the file
#define ZR_NOALLOC    0x00000300     // failed to allocate some resource
#define ZR_WRITE      0x00000400     // a general error writing to the file
#define ZR_NOTFOUND   0x00000500     // couldn't find that file in the zip
#define ZR_MORE       0x00000600     // there's still more data to be unzipped
#define ZR_CORRUPT    0x00000700     // the zipfile is corrupt or not a zipfile
#define ZR_READ       0x00000800     // a general error reading the file
// The following come from mistakes on the part of the caller
#define ZR_CALLERMASK 0x00FF0000
#define ZR_ARGS       0x00010000     // general mistake with the arguments
#define ZR_NOTMMAP    0x00020000     // tried to ZipGetMemory, but that only works on mmap zipfiles, which yours wasn't
#define ZR_MEMSIZE    0x00030000     // the memory size is too small
#define ZR_FAILED     0x00040000     // the thing was already failed when you called this function
#define ZR_ENDED      0x00050000     // the zip creation has already been closed
#define ZR_MISSIZE    0x00060000     // the indicated input file size turned out mistaken
#define ZR_PARTIALUNZ 0x00070000     // the file had already been partially unzipped
#define ZR_ZMODE      0x00080000     // tried to mix creating/opening a zip 
// The following come from bugs within the zip library itself
#define ZR_BUGMASK    0xFF000000
#define ZR_NOTINITED  0x01000000     // initialisation didn't work
#define ZR_SEEK       0x02000000     // trying to seek in an unseekable file
#define ZR_NOCHANGE   0x04000000     // changed its mind on storage, but not allowed
#define ZR_FLATE      0x05000000     // an internal error in the de/inflation code






// e.g.
//
// (1) Traditional use, creating a zipfile from existing files
//     HZIP hz = CreateZip("c:\\simple1.zip",0);
//     ZipAdd(hz,"znsimple.bmp", "c:\\simple.bmp");
//     ZipAdd(hz,"znsimple.txt", "c:\\simple.txt");
//     CloseZip(hz);
//
// (2) Memory use, creating an auto-allocated mem-based zip file from various sources
//     HZIP hz = CreateZip(0,100000, 0);
//     // adding a conventional file...
//     ZipAdd(hz,"src1.txt",  "c:\\src1.txt");
//     // adding something from memory...
//     char buf[1000]; for (int i=0; i<1000; i++) buf[i]=(char)(i&0x7F);
//     ZipAdd(hz,"file.dat",  buf,1000);
//     // adding something from a pipe...
//     HANDLE hread,hwrite; CreatePipe(&hread,&hwrite,NULL,0);
//     HANDLE hthread = CreateThread(0,0,ThreadFunc,(void*)hwrite,0,0);
//     ZipAdd(hz,"unz3.dat",  hread,1000);  // the '1000' is optional.
//     WaitForSingleObject(hthread,INFINITE);
//     CloseHandle(hthread); CloseHandle(hread);
//     ... meanwhile DWORD WINAPI ThreadFunc(void *dat)
//                   { HANDLE hwrite = (HANDLE)dat;
//                     char buf[1000]={17};
//                     DWORD writ; WriteFile(hwrite,buf,1000,&writ,NULL);
//                     CloseHandle(hwrite);
//                     return 0;
//                   }
//     // and now that the zip is created, let's do something with it:
//     void *zbuf; unsigned long zlen; ZipGetMemory(hz,&zbuf,&zlen);
//     HANDLE hfz = CreateFile("test2.zip",GENERIC_WRITE,0,0,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,0);
//     DWORD writ; WriteFile(hfz,zbuf,zlen,&writ,NULL);
//     CloseHandle(hfz);
//     CloseZip(hz);
//
// (3) Handle use, for file handles and pipes
//     HANDLE hzread,hzwrite; CreatePipe(&hzread,&hzwrite,0,0);
//     HANDLE hthread = CreateThread(0,0,ZipReceiverThread,(void*)hzread,0,0);
//     HZIP hz = CreateZipHandle(hzwrite,0);
//     // ... add to it
//     CloseZip(hz);
//     CloseHandle(hzwrite);
//     WaitForSingleObject(hthread,INFINITE);
//     CloseHandle(hthread);
//     ... meanwhile DWORD WINAPI ZipReceiverThread(void *dat)
//                   { HANDLE hread = (HANDLE)dat;
//                     char buf[1000];
//                     while (true)
//                     { DWORD red; ReadFile(hread,buf,1000,&red,NULL);
//                       // ... and do something with this zip data we're receiving
//                       if (red==0) break;
//                     }
//                     CloseHandle(hread);
//                     return 0;
//                   }



// Now we indulge in a little skullduggery so that the code works whether
// the user has included just zip or both zip and unzip.
// Idea: if header files for both zip and unzip are present, then presumably
// the cpp files for zip and unzip are both present, so we will call
// one or the other of them based on a dynamic choice. If the header file
// for only one is present, then we will bind to that particular one.
ZRESULT CloseZipZ(HZIP hz);
unsigned int FormatZipMessageZ(ZRESULT code, char *buf, unsigned int len);
bool IsZipHandleZ(HZIP hz);
#ifdef _unzip_H
#undef CloseZip
#define CloseZip(hz) (IsZipHandleZ(hz)?CloseZipZ(hz):CloseZipU(hz))
#else
#define CloseZip CloseZipZ
#define FormatZipMessage FormatZipMessageZ
#endif



#endif

ZIP压缩源文件

#include <windows.h>
#include <stdio.h>
#include <tchar.h>
#include "zip.h"


// THIS FILE is almost entirely based upon code by info-zip.
// It has been modified by Lucian Wischik. The modifications
// were a complete rewrite of the bit of code that generates the
// layout of the zipfile, and support for zipping to/from memory
// or handles or pipes or pagefile or diskfiles, encryption, unicode.
// The original code may be found at http://www.info-zip.org
// The original copyright text follows.
//
//
//
// This is version 1999-Oct-05 of the Info-ZIP copyright and license.
// The definitive version of this document should be available at
// ftp://ftp.cdrom.com/pub/infozip/license.html indefinitely.
//
// Copyright (c) 1990-1999 Info-ZIP.  All rights reserved.
//
// For the purposes of this copyright and license, "Info-ZIP" is defined as
// the following set of individuals:
//
//   Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois,
//   Jean-loup Gailly, Hunter Goatley, Ian Gorman, Chris Herborth, Dirk Haase,
//   Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz, David Kirschbaum,
//   Johnny Lee, Onno van der Linden, Igor Mandrichenko, Steve P. Miller,
//   Sergio Monesi, Keith Owens, George Petrov, Greg Roelofs, Kai Uwe Rommel,
//   Steve Salisbury, Dave Smith, Christian Spieler, Antoine Verheijen,
//   Paul von Behren, Rich Wales, Mike White
//
// This software is provided "as is," without warranty of any kind, express
// or implied.  In no event shall Info-ZIP or its contributors be held liable
// for any direct, indirect, incidental, special or consequential damages
// arising out of the use of or inability to use this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
//    1. Redistributions of source code must retain the above copyright notice,
//       definition, disclaimer, and this list of conditions.
//
//    2. Redistributions in binary form must reproduce the above copyright
//       notice, definition, disclaimer, and this list of conditions in
//       documentation and/or other materials provided with the distribution.
//
//    3. Altered versions--including, but not limited to, ports to new operating
//       systems, existing ports with new graphical interfaces, and dynamic,
//       shared, or static library versions--must be plainly marked as such
//       and must not be misrepresented as being the original source.  Such
//       altered versions also must not be misrepresented as being Info-ZIP
//       releases--including, but not limited to, labeling of the altered
//       versions with the names "Info-ZIP" (or any variation thereof, including,
//       but not limited to, different capitalizations), "Pocket UnZip," "WiZ"
//       or "MacZip" without the explicit permission of Info-ZIP.  Such altered
//       versions are further prohibited from misrepresentative use of the
//       Zip-Bugs or Info-ZIP e-mail addresses or of the Info-ZIP URL(s).
//
//    4. Info-ZIP retains the right to use the names "Info-ZIP," "Zip," "UnZip,"
//       "WiZ," "Pocket UnZip," "Pocket Zip," and "MacZip" for its own source and
//       binary releases.
//


typedef unsigned char uch;      // unsigned 8-bit value
typedef unsigned short ush;     // unsigned 16-bit value
typedef unsigned long ulg;      // unsigned 32-bit value
typedef size_t extent;          // file size
typedef unsigned Pos;   // must be at least 32 bits
typedef unsigned IPos; // A Pos is an index in the character window. Pos is used only for parameter passing

#ifndef EOF
#define EOF (-1)
#endif


// Error return values.  The values 0..4 and 12..18 follow the conventions
// of PKZIP.   The values 4..10 are all assigned to "insufficient memory"
// by PKZIP, so the codes 5..10 are used here for other purposes.
#define ZE_MISS         -1      // used by procname(), zipbare()
#define ZE_OK           0       // success
#define ZE_EOF          2       // unexpected end of zip file
#define ZE_FORM         3       // zip file structure error
#define ZE_MEM          4       // out of memory
#define ZE_LOGIC        5       // internal logic error
#define ZE_BIG          6       // entry too large to split
#define ZE_NOTE         7       // invalid comment format
#define ZE_TEST         8       // zip test (-T) failed or out of memory
#define ZE_ABORT        9       // user interrupt or termination
#define ZE_TEMP         10      // error using a temp file
#define ZE_READ         11      // read or seek error
#define ZE_NONE         12      // nothing to do
#define ZE_NAME         13      // missing or empty zip file
#define ZE_WRITE        14      // error writing to a file
#define ZE_CREAT        15      // couldn't open to write
#define ZE_PARMS        16      // bad command line
#define ZE_OPEN         18      // could not open a specified file to read
#define ZE_MAXERR       18      // the highest error number


// internal file attribute
#define UNKNOWN (-1)
#define BINARY  0
#define ASCII   1

#define BEST -1                 // Use best method (deflation or store)
#define STORE 0                 // Store method
#define DEFLATE 8               // Deflation method

#define CRCVAL_INITIAL  0L

// MSDOS file or directory attributes
#define MSDOS_HIDDEN_ATTR 0x02
#define MSDOS_DIR_ATTR 0x10

// Lengths of headers after signatures in bytes
#define LOCHEAD 26
#define CENHEAD 42
#define ENDHEAD 18

// Definitions for extra field handling:
#define EB_HEADSIZE       4     /* length of a extra field block header */
#define EB_LEN            2     /* offset of data length field in header */
#define EB_UT_MINLEN      1     /* minimal UT field contains Flags byte */
#define EB_UT_FLAGS       0     /* byte offset of Flags field */
#define EB_UT_TIME1       1     /* byte offset of 1st time value */
#define EB_UT_FL_MTIME    (1 << 0)      /* mtime present */
#define EB_UT_FL_ATIME    (1 << 1)      /* atime present */
#define EB_UT_FL_CTIME    (1 << 2)      /* ctime present */
#define EB_UT_LEN(n)      (EB_UT_MINLEN + 4 * (n))
#define EB_L_UT_SIZE    (EB_HEADSIZE + EB_UT_LEN(3))
#define EB_C_UT_SIZE    (EB_HEADSIZE + EB_UT_LEN(1))


// Macros for writing machine integers to little-endian format
#define PUTSH(a,f) {char _putsh_c=(char)((a)&0xff); wfunc(param,&_putsh_c,1); _putsh_c=(char)((a)>>8); wfunc(param,&_putsh_c,1);}
#define PUTLG(a,f) {PUTSH((a) & 0xffff,(f)) PUTSH((a) >> 16,(f))}


// -- Structure of a ZIP file --
// Signatures for zip file information headers
#define LOCSIG     0x04034b50L
#define CENSIG     0x02014b50L
#define ENDSIG     0x06054b50L
#define EXTLOCSIG  0x08074b50L


#define MIN_MATCH  3
#define MAX_MATCH  258
// The minimum and maximum match lengths


#define WSIZE  (0x8000)
// Maximum window size = 32K. If you are really short of memory, compile
// with a smaller WSIZE but this reduces the compression ratio for files
// of size > WSIZE. WSIZE must be a power of two in the current implementation.
//

#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
// Minimum amount of lookahead, except at the end of the input file.
// See deflate.c for comments about the MIN_MATCH+1.
//

#define MAX_DIST  (WSIZE-MIN_LOOKAHEAD)
// In order to simplify the code, particularly on 16 bit machines, match
// distances are limited to MAX_DIST instead of WSIZE.
//


#define ZIP_HANDLE   1
#define ZIP_FILENAME 2
#define ZIP_MEMORY   3
#define ZIP_FOLDER   4



// ===========================================================================
// Constants
//

#define MAX_BITS 15
// All codes must not exceed MAX_BITS bits

#define MAX_BL_BITS 7
// Bit length codes must not exceed MAX_BL_BITS bits

#define LENGTH_CODES 29
// number of length codes, not counting the special END_BLOCK code

#define LITERALS  256
// number of literal bytes 0..255

#define END_BLOCK 256
// end of block literal code

#define L_CODES (LITERALS+1+LENGTH_CODES)
// number of Literal or Length codes, including the END_BLOCK code

#define D_CODES   30
// number of distance codes

#define BL_CODES  19
// number of codes used to transfer the bit lengths


#define STORED_BLOCK 0
#define STATIC_TREES 1
#define DYN_TREES    2
// The three kinds of block type

#define LIT_BUFSIZE  0x8000
#define DIST_BUFSIZE  LIT_BUFSIZE
// Sizes of match buffers for literals/lengths and distances.  There are
// 4 reasons for limiting LIT_BUFSIZE to 64K:
//   - frequencies can be kept in 16 bit counters
//   - if compression is not successful for the first block, all input data is
//     still in the window so we can still emit a stored block even when input
//     comes from standard input.  (This can also be done for all blocks if
//     LIT_BUFSIZE is not greater than 32K.)
//   - if compression is not successful for a file smaller than 64K, we can
//     even emit a stored file instead of a stored block (saving 5 bytes).
//   - creating new Huffman trees less frequently may not provide fast
//     adaptation to changes in the input data statistics. (Take for
//     example a binary file with poorly compressible code followed by
//     a highly compressible string table.) Smaller buffer sizes give
//     fast adaptation but have of course the overhead of transmitting trees
//     more frequently.
//   - I can't count above 4
// The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
// memory at the expense of compression). Some optimizations would be possible
// if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
//

#define REP_3_6      16
// repeat previous bit length 3-6 times (2 bits of repeat count)

#define REPZ_3_10    17
// repeat a zero length 3-10 times  (3 bits of repeat count)

#define REPZ_11_138  18
// repeat a zero length 11-138 times  (7 bits of repeat count)

#define HEAP_SIZE (2*L_CODES+1)
// maximum heap size


// ===========================================================================
// Local data used by the "bit string" routines.
//

#define Buf_size (8 * 2*sizeof(char))
// Number of bits used within bi_buf. (bi_buf may be implemented on
// more than 16 bits on some systems.)

// Output a 16 bit value to the bit stream, lower (oldest) byte first
#define PUTSHORT(state,w) \
{ if (state.bs.out_offset >= state.bs.out_size-1) \
    state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \
  state.bs.out_buf[state.bs.out_offset++] = (char) ((w) & 0xff); \
  state.bs.out_buf[state.bs.out_offset++] = (char) ((ush)(w) >> 8); \
}

#define PUTBYTE(state,b) \
{ if (state.bs.out_offset >= state.bs.out_size) \
    state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \
  state.bs.out_buf[state.bs.out_offset++] = (char) (b); \
}

// DEFLATE.CPP HEADER

#define HASH_BITS  15
// For portability to 16 bit machines, do not use values above 15.

#define HASH_SIZE (unsigned)(1<<HASH_BITS)
#define HASH_MASK (HASH_SIZE-1)
#define WMASK     (WSIZE-1)
// HASH_SIZE and WSIZE must be powers of two

#define NIL 0
// Tail of hash chains

#define FAST 4
#define SLOW 2
// speed options for the general purpose bit flag

#define TOO_FAR 4096
// Matches of length 3 are discarded if their distance exceeds TOO_FAR



#define EQUAL 0
// result of memcmp for equal strings


// ===========================================================================
// Local data used by the "longest match" routines.

#define H_SHIFT  ((HASH_BITS+MIN_MATCH-1)/MIN_MATCH)
// Number of bits by which ins_h and del_h must be shifted at each
// input step. It must be such that after MIN_MATCH steps, the oldest
// byte no longer takes part in the hash key, that is:
//   H_SHIFT * MIN_MATCH >= HASH_BITS

#define max_insert_length  max_lazy_match
// Insert new strings in the hash table only if the match length
// is not greater than this length. This saves time but degrades compression.
// max_insert_length is used only for compression levels <= 3.



const int extra_lbits[LENGTH_CODES] // extra bits for each length code
    = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0};

const int extra_dbits[D_CODES] // extra bits for each distance code
    = {0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13};

const int extra_blbits[BL_CODES]// extra bits for each bit length code
    = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7};

const uch bl_order[BL_CODES] = {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
// The lengths of the bit length codes are sent in order of decreasing
// probability, to avoid transmitting the lengths for unused bit length codes.


typedef struct config
{
	ush good_length; // reduce lazy search above this match length
	ush max_lazy;    // do not perform lazy search above this match length
	ush nice_length; // quit search above this match length
	ush max_chain;
} config;

// Values for max_lazy_match, good_match, nice_match and max_chain_length,
// depending on the desired pack level (0..9). The values given below have
// been tuned to exclude worst case performance for pathological files.
// Better values may be found for specific files.
//

const config configuration_table[10] =
{
	//  good lazy nice chain
	{0,    0,  0,    0},  // 0 store only
	{4,    4,  8,    4},  // 1 maximum speed, no lazy matches
	{4,    5, 16,    8},  // 2
	{4,    6, 32,   32},  // 3
	{4,    4, 16,   16},  // 4 lazy matches */
	{8,   16, 32,   32},  // 5
	{8,   16, 128, 128},  // 6
	{8,   32, 128, 256},  // 7
	{32, 128, 258, 1024}, // 8
	{32, 258, 258, 4096}
};// 9 maximum compression */

// Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
// For deflate_fast() (levels <= 3) good is ignored and lazy has a different meaning.







// Data structure describing a single value and its code string.
typedef struct ct_data
{
	union
	{
		ush  freq;       // frequency count
		ush  code;       // bit string
	} fc;
	union
	{
		ush  dad;        // father node in Huffman tree
		ush  len;        // length of bit string
	} dl;
} ct_data;

typedef struct tree_desc
{
	ct_data *dyn_tree;      // the dynamic tree
	ct_data *static_tree;   // corresponding static tree or NULL
	const int *extra_bits;  // extra bits for each code or NULL
	int     extra_base;     // base index for extra_bits
	int     elems;          // max number of elements in the tree
	int     max_length;     // max bit length for the codes
	int     max_code;       // largest code with non zero frequency
} tree_desc;




class TTreeState {
public:
	TTreeState();

	ct_data dyn_ltree[HEAP_SIZE];    // literal and length tree
	ct_data dyn_dtree[2 * D_CODES + 1]; // distance tree
	ct_data static_ltree[L_CODES + 2]; // the static literal tree...
	// ... Since the bit lengths are imposed, there is no need for the L_CODES
	// extra codes used during heap construction. However the codes 286 and 287
	// are needed to build a canonical tree (see ct_init below).
	ct_data static_dtree[D_CODES]; // the static distance tree...
	// ... (Actually a trivial tree since all codes use 5 bits.)
	ct_data bl_tree[2 * BL_CODES + 1]; // Huffman tree for the bit lengths

	tree_desc l_desc;
	tree_desc d_desc;
	tree_desc bl_desc;

	ush bl_count[MAX_BITS + 1]; // number of codes at each bit length for an optimal tree

	int heap[2 * L_CODES + 1]; // heap used to build the Huffman trees
	int heap_len;               // number of elements in the heap
	int heap_max;               // element of largest frequency
	// The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
	// The same heap array is used to build all trees.

	uch depth[2 * L_CODES + 1];
	// Depth of each subtree used as tie breaker for trees of equal frequency

	uch length_code[MAX_MATCH - MIN_MATCH + 1];
	// length code for each normalized match length (0 == MIN_MATCH)

	uch dist_code[512];
	// distance codes. The first 256 values correspond to the distances
	// 3 .. 258, the last 256 values correspond to the top 8 bits of
	// the 15 bit distances.

	int base_length[LENGTH_CODES];
	// First normalized length for each code (0 = MIN_MATCH)

	int base_dist[D_CODES];
	// First normalized distance for each code (0 = distance of 1)

	uch far l_buf[LIT_BUFSIZE];  // buffer for literals/lengths
	ush far d_buf[DIST_BUFSIZE]; // buffer for distances

	uch flag_buf[(LIT_BUFSIZE / 8)];
	// flag_buf is a bit array distinguishing literals from lengths in
	// l_buf, and thus indicating the presence or absence of a distance.

	unsigned last_lit;    // running index in l_buf
	unsigned last_dist;   // running index in d_buf
	unsigned last_flags;  // running index in flag_buf
	uch flags;            // current flags not yet saved in flag_buf
	uch flag_bit;         // current bit used in flags
	// bits are filled in flags starting at bit 0 (least significant).
	// Note: these flags are overkill in the current code since we don't
	// take advantage of DIST_BUFSIZE == LIT_BUFSIZE.

	ulg opt_len;          // bit length of current block with optimal trees
	ulg static_len;       // bit length of current block with static trees

	ulg cmpr_bytelen;     // total byte length of compressed file
	ulg cmpr_len_bits;    // number of bits past 'cmpr_bytelen'

	ulg input_len;        // total byte length of input file
	// input_len is for debugging only since we can get it by other means.

	ush *file_type;       // pointer to UNKNOWN, BINARY or ASCII
	//  int *file_method;     // pointer to DEFLATE or STORE
};

TTreeState::TTreeState()
{
	tree_desc a = {dyn_ltree, static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS, 0};
	l_desc = a;
	tree_desc b = {dyn_dtree, static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS, 0};
	d_desc = b;
	tree_desc c = {bl_tree, NULL,       extra_blbits, 0,         BL_CODES, MAX_BL_BITS, 0};
	bl_desc = c;
	last_lit = 0;
	last_dist = 0;
	last_flags = 0;
}



class TBitState {
public:

	int flush_flg;
	//
	unsigned bi_buf;
	// Output buffer. bits are inserted starting at the bottom (least significant
	// bits). The width of bi_buf must be at least 16 bits.
	int bi_valid;
	// Number of valid bits in bi_buf.  All bits above the last valid bit
	// are always zero.
	char *out_buf;
	// Current output buffer.
	unsigned out_offset;
	// Current offset in output buffer.
	// On 16 bit machines, the buffer is limited to 64K.
	unsigned out_size;
	// Size of current output buffer
	ulg bits_sent;   // bit length of the compressed data  only needed for debugging???
};







class TDeflateState {
public:
	TDeflateState() {
		window_size = 0;
	}

	uch    window[2L * WSIZE];
	// Sliding window. Input bytes are read into the second half of the window,
	// and move to the first half later to keep a dictionary of at least WSIZE
	// bytes. With this organization, matches are limited to a distance of
	// WSIZE-MAX_MATCH bytes, but this ensures that IO is always
	// performed with a length multiple of the block size. Also, it limits
	// the window size to 64K, which is quite useful on MSDOS.
	// To do: limit the window size to WSIZE+CBSZ if SMALL_MEM (the code would
	// be less efficient since the data would have to be copied WSIZE/CBSZ times)
	Pos    prev[WSIZE];
	// Link to older string with same hash index. To limit the size of this
	// array to 64K, this link is maintained only for the last 32K strings.
	// An index in this array is thus a window index modulo 32K.
	Pos    head[HASH_SIZE];
	// Heads of the hash chains or NIL. If your compiler thinks that
	// HASH_SIZE is a dynamic value, recompile with -DDYN_ALLOC.

	ulg window_size;
	// window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
	// input file length plus MIN_LOOKAHEAD.

	long block_start;
	// window position at the beginning of the current output block. Gets
	// negative when the window is moved backwards.

	int sliding;
	// Set to false when the input file is already in memory

	unsigned ins_h;  // hash index of string to be inserted

	unsigned int prev_length;
	// Length of the best match at previous step. Matches not greater than this
	// are discarded. This is used in the lazy match evaluation.

	unsigned strstart;         // start of string to insert
	unsigned match_start; // start of matching string
	int      eofile;           // flag set at end of input file
	unsigned lookahead;        // number of valid bytes ahead in window

	unsigned max_chain_length;
	// To speed up deflation, hash chains are never searched beyond this length.
	// A higher limit improves compression ratio but degrades the speed.

	unsigned int max_lazy_match;
	// Attempt to find a better match only when the current match is strictly
	// smaller than this value. This mechanism is used only for compression
	// levels >= 4.

	unsigned good_match;
	// Use a faster search when the previous match is longer than this

	int nice_match; // Stop searching when current match exceeds this
};

typedef __int64 lutime_t;       // define it ourselves since we don't include time.h

typedef struct iztimes
{
	lutime_t atime, mtime, ctime;
} iztimes; // access, modify, create times

typedef struct zlist
{
	ush vem, ver, flg, how;       // See central header in zipfile.c for what vem..off are
	ulg tim, crc, siz, len;
	extent nam, ext, cext, com;   // offset of ext must be >= LOCHEAD
	ush dsk, att, lflg;           // offset of lflg must be >= LOCHEAD
	ulg atx, off;
	char name[MAX_PATH];          // File name in zip file
	char *extra;                  // Extra field (set only if ext != 0)
	char *cextra;                 // Extra in central (set only if cext != 0)
	char *comment;                // Comment (set only if com != 0)
	char iname[MAX_PATH];         // Internal file name after cleanup
	char zname[MAX_PATH];         // External version of internal name
	int mark;                     // Marker for files to operate on
	int trash;                    // Marker for files to delete
	int dosflag;                  // Set to force MSDOS file attributes
	struct zlist far *nxt;        // Pointer to next header in list
} TZipFileInfo;


struct TState;
typedef unsigned (*READFUNC)(TState &state, char *buf, unsigned size);
typedef unsigned (*FLUSHFUNC)(void *param, const char *buf, unsigned *size);
typedef unsigned (*WRITEFUNC)(void *param, const char *buf, unsigned size);
struct TState
{
	void *param;
	int level;
	bool seekable;
	READFUNC readfunc;
	FLUSHFUNC flush_outbuf;
	TTreeState ts;
	TBitState bs;
	TDeflateState ds;
	const char *err;
};









void Assert(TState &state, bool cond, const char *msg)
{
	if (cond) return;

	state.err = msg;
}
void __cdecl Trace(const char *x, ...)
{
	va_list paramList;
	va_start(paramList, x);
	paramList;
	va_end(paramList);
}
void __cdecl Tracec(bool, const char *x, ...)
{
	va_list paramList;
	va_start(paramList, x);
	paramList;
	va_end(paramList);
}



// ===========================================================================
// Local (static) routines in this file.
//

void init_block     (TState &);
void pqdownheap     (TState &, ct_data *tree, int k);
void gen_bitlen     (TState &, tree_desc *desc);
void gen_codes      (TState &state, ct_data *tree, int max_code);
void build_tree     (TState &, tree_desc *desc);
void scan_tree      (TState &, ct_data *tree, int max_code);
void send_tree      (TState &state, ct_data *tree, int max_code);
int  build_bl_tree  (TState &);
void send_all_trees (TState &state, int lcodes, int dcodes, int blcodes);
void compress_block (TState &state, ct_data *ltree, ct_data *dtree);
void set_file_type  (TState &);
void send_bits      (TState &state, int value, int length);
unsigned bi_reverse (unsigned code, int len);
void bi_windup      (TState &state);
void copy_block     (TState &state, char *buf, unsigned len, int header);


#define send_code(state, c, tree) send_bits(state, tree[c].fc.code, tree[c].dl.len)
// Send a code of the given tree. c and tree must not have side effects

// alternatively...
//#define send_code(state, c, tree)
//     { if (state.verbose>1) fprintf(stderr,"\ncd %3d ",(c));
//       send_bits(state, tree[c].fc.code, tree[c].dl.len); }

#define d_code(dist) ((dist) < 256 ? state.ts.dist_code[dist] : state.ts.dist_code[256+((dist)>>7)])
// Mapping from a distance to a distance code. dist is the distance - 1 and
// must not have side effects. dist_code[256] and dist_code[257] are never used.

#define Max(a,b) (a >= b ? a : b)
/* the arguments must not have side effects */

/* ===========================================================================
 * Allocate the match buffer, initialize the various tables and save the
 * location of the internal file attribute (ascii/binary) and method
 * (DEFLATE/STORE).
 */
void ct_init(TState &state, ush *attr)
{
	int n;        /* iterates over tree elements */
	int bits;     /* bit counter */
	int length;   /* length value */
	int code;     /* code value */
	int dist;     /* distance index */

	state.ts.file_type = attr;
	//state.ts.file_method = method;
	state.ts.cmpr_bytelen = state.ts.cmpr_len_bits = 0L;
	state.ts.input_len = 0L;

	if (state.ts.static_dtree[0].dl.len != 0) return; /* ct_init already called */

	/* Initialize the mapping length (0..255) -> length code (0..28) */
	length = 0;

	for (code = 0; code < LENGTH_CODES - 1; code++)
	{
		state.ts.base_length[code] = length;

		for (n = 0; n < (1 << extra_lbits[code]); n++)
		{
			state.ts.length_code[length++] = (uch)code;
		}
	}

	Assert(state, length == 256, "ct_init: length != 256");
	/* Note that the length 255 (match length 258) can be represented
	 * in two different ways: code 284 + 5 bits or code 285, so we
	 * overwrite length_code[255] to use the best encoding:
	 */
	state.ts.length_code[length - 1] = (uch)code;

	/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
	dist = 0;

	for (code = 0 ; code < 16; code++)
	{
		state.ts.base_dist[code] = dist;

		for (n = 0; n < (1 << extra_dbits[code]); n++)
		{
			state.ts.dist_code[dist++] = (uch)code;
		}
	}

	Assert(state, dist == 256, "ct_init: dist != 256");
	dist >>= 7; /* from now on, all distances are divided by 128 */

	for ( ; code < D_CODES; code++)
	{
		state.ts.base_dist[code] = dist << 7;

		for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++)
		{
			state.ts.dist_code[256 + dist++] = (uch)code;
		}
	}

	Assert(state, dist == 256, "ct_init: 256+dist != 512");

	/* Construct the codes of the static literal tree */
	for (bits = 0; bits <= MAX_BITS; bits++) state.ts.bl_count[bits] = 0;

	n = 0;

	while (n <= 143) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++;

	while (n <= 255) state.ts.static_ltree[n++].dl.len = 9, state.ts.bl_count[9]++;

	while (n <= 279) state.ts.static_ltree[n++].dl.len = 7, state.ts.bl_count[7]++;

	while (n <= 287) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++;

	/* fc.codes 286 and 287 do not exist, but we must include them in the
	 * tree construction to get a canonical Huffman tree (longest code
	 * all ones)
	 */
	gen_codes(state, (ct_data *)state.ts.static_ltree, L_CODES + 1);

	/* The static distance tree is trivial: */
	for (n = 0; n < D_CODES; n++)
	{
		state.ts.static_dtree[n].dl.len = 5;
		state.ts.static_dtree[n].fc.code = (ush)bi_reverse(n, 5);
	}

	/* Initialize the first block of the first file: */
	init_block(state);
}

/* ===========================================================================
 * Initialize a new block.
 */
void init_block(TState &state)
{
	int n; /* iterates over tree elements */

	/* Initialize the trees. */
	for (n = 0; n < L_CODES;  n++) state.ts.dyn_ltree[n].fc.freq = 0;

	for (n = 0; n < D_CODES;  n++) state.ts.dyn_dtree[n].fc.freq = 0;

	for (n = 0; n < BL_CODES; n++) state.ts.bl_tree[n].fc.freq = 0;

	state.ts.dyn_ltree[END_BLOCK].fc.freq = 1;
	state.ts.opt_len = state.ts.static_len = 0L;
	state.ts.last_lit = state.ts.last_dist = state.ts.last_flags = 0;
	state.ts.flags = 0;
	state.ts.flag_bit = 1;
}

#define SMALLEST 1
/* Index within the heap array of least frequent node in the Huffman tree */


/* ===========================================================================
 * Remove the smallest element from the heap and recreate the heap with
 * one less element. Updates heap and heap_len.
 */
#define pqremove(tree, top) \
{\
    top = state.ts.heap[SMALLEST]; \
    state.ts.heap[SMALLEST] = state.ts.heap[state.ts.heap_len--]; \
    pqdownheap(state,tree, SMALLEST); \
}

/* ===========================================================================
 * Compares to subtrees, using the tree depth as tie breaker when
 * the subtrees have equal frequency. This minimizes the worst case length.
 */
#define smaller(tree, n, m) \
   (tree[n].fc.freq < tree[m].fc.freq || \
   (tree[n].fc.freq == tree[m].fc.freq && state.ts.depth[n] <= state.ts.depth[m]))

/* ===========================================================================
 * Restore the heap property by moving down the tree starting at node k,
 * exchanging a node with the smallest of its two sons if necessary, stopping
 * when the heap property is re-established (each father smaller than its
 * two sons).
 */
void pqdownheap(TState &state, ct_data *tree, int k)
{
	int v = state.ts.heap[k];
	int j = k << 1;  /* left son of k */
	int htemp;       /* required because of bug in SASC compiler */

	while (j <= state.ts.heap_len)
	{
		/* Set j to the smallest of the two sons: */
		if (j < state.ts.heap_len && smaller(tree, state.ts.heap[j + 1], state.ts.heap[j])) j++;

		/* Exit if v is smaller than both sons */
		htemp = state.ts.heap[j];

		if (smaller(tree, v, htemp)) break;

		/* Exchange v with the smallest son */
		state.ts.heap[k] = htemp;
		k = j;

		/* And continue down the tree, setting j to the left son of k */
		j <<= 1;
	}

	state.ts.heap[k] = v;
}

/* ===========================================================================
 * Compute the optimal bit lengths for a tree and update the total bit length
 * for the current block.
 * IN assertion: the fields freq and dad are set, heap[heap_max] and
 *    above are the tree nodes sorted by increasing frequency.
 * OUT assertions: the field len is set to the optimal bit length, the
 *     array bl_count contains the frequencies for each bit length.
 *     The length opt_len is updated; static_len is also updated if stree is
 *     not null.
 */
void gen_bitlen(TState &state, tree_desc *desc)
{
	ct_data *tree  = desc->dyn_tree;
	const int *extra     = desc->extra_bits;
	int base            = desc->extra_base;
	int max_code        = desc->max_code;
	int max_length      = desc->max_length;
	ct_data *stree = desc->static_tree;
	int h;              /* heap index */
	int n, m;           /* iterate over the tree elements */
	int bits;           /* bit length */
	int xbits;          /* extra bits */
	ush f;              /* frequency */
	int overflow = 0;   /* number of elements with bit length too large */

	for (bits = 0; bits <= MAX_BITS; bits++) state.ts.bl_count[bits] = 0;

	/* In a first pass, compute the optimal bit lengths (which may
	 * overflow in the case of the bit length tree).
	 */
	tree[state.ts.heap[state.ts.heap_max]].dl.len = 0; /* root of the heap */

	for (h = state.ts.heap_max + 1; h < HEAP_SIZE; h++)
	{
		n = state.ts.heap[h];
		bits = tree[tree[n].dl.dad].dl.len + 1;

		if (bits > max_length) bits = max_length, overflow++;

		tree[n].dl.len = (ush)bits;
		/* We overwrite tree[n].dl.dad which is no longer needed */

		if (n > max_code) continue; /* not a leaf node */

		state.ts.bl_count[bits]++;
		xbits = 0;

		if (n >= base) xbits = extra[n - base];

		f = tree[n].fc.freq;
		state.ts.opt_len += (ulg)f * (bits + xbits);

		if (stree) state.ts.static_len += (ulg)f * (stree[n].dl.len + xbits);
	}

	if (overflow == 0) return;

	Trace("\nbit length overflow\n");
	/* This happens for example on obj2 and pic of the Calgary corpus */

	/* Find the first bit length which could increase: */
	do
	{
		bits = max_length - 1;

		while (state.ts.bl_count[bits] == 0) bits--;

		state.ts.bl_count[bits]--;           /* move one leaf down the tree */
		state.ts.bl_count[bits + 1] += (ush)2; /* move one overflow item as its brother */
		state.ts.bl_count[max_length]--;
		/* The brother of the overflow item also moves one step up,
		 * but this does not affect bl_count[max_length]
		 */
		overflow -= 2;
	} while (overflow > 0);

	/* Now recompute all bit lengths, scanning in increasing frequency.
	 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
	 * lengths instead of fixing only the wrong ones. This idea is taken
	 * from 'ar' written by Haruhiko Okumura.)
	 */
	for (bits = max_length; bits != 0; bits--)
	{
		n = state.ts.bl_count[bits];

		while (n != 0)
		{
			m = state.ts.heap[--h];

			if (m > max_code) continue;

			if (tree[m].dl.len != (ush)bits)
			{
				Trace("code %d bits %d->%d\n", m, tree[m].dl.len, bits);
				state.ts.opt_len += ((long)bits - (long)tree[m].dl.len) * (long)tree[m].fc.freq;
				tree[m].dl.len = (ush)bits;
			}

			n--;
		}
	}
}

/* ===========================================================================
 * Generate the codes for a given tree and bit counts (which need not be
 * optimal).
 * IN assertion: the array bl_count contains the bit length statistics for
 * the given tree and the field len is set for all tree elements.
 * OUT assertion: the field code is set for all tree elements of non
 *     zero code length.
 */
void gen_codes (TState &state, ct_data *tree, int max_code)
{
	ush next_code[MAX_BITS + 1]; /* next code value for each bit length */
	ush code = 0;              /* running code value */
	int bits;                  /* bit index */
	int n;                     /* code index */

	/* The distribution counts are first used to generate the code values
	 * without bit reversal.
	 */
	for (bits = 1; bits <= MAX_BITS; bits++)
	{
		next_code[bits] = code = (ush)((code + state.ts.bl_count[bits - 1]) << 1);
	}

	/* Check that the bit counts in bl_count are consistent. The last code
	 * must be all ones.
	 */
	Assert(state, code + state.ts.bl_count[MAX_BITS] - 1 == (1 << ((ush) MAX_BITS)) - 1,
	    "inconsistent bit counts");
	Trace("\ngen_codes: max_code %d ", max_code);

	for (n = 0;  n <= max_code; n++)
	{
		int len = tree[n].dl.len;

		if (len == 0) continue;

		/* Now reverse the bits */
		tree[n].fc.code = (ush)bi_reverse(next_code[len]++, len);

		//Tracec(tree != state.ts.static_ltree, "\nn %3d %c l %2d c %4x (%x) ", n, (isgraph(n) ? n : ' '), len, tree[n].fc.code, next_code[len]-1);
	}
}

/* ===========================================================================
 * Construct one Huffman tree and assigns the code bit strings and lengths.
 * Update the total bit length for the current block.
 * IN assertion: the field freq is set for all tree elements.
 * OUT assertions: the fields len and code are set to the optimal bit length
 *     and corresponding code. The length opt_len is updated; static_len is
 *     also updated if stree is not null. The field max_code is set.
 */
void build_tree(TState &state, tree_desc *desc)
{
	ct_data *tree   = desc->dyn_tree;
	ct_data *stree  = desc->static_tree;
	int elems            = desc->elems;
	int n, m;          /* iterate over heap elements */
	int max_code = -1; /* largest code with non zero frequency */
	int node = elems;  /* next internal node of the tree */

	/* Construct the initial heap, with least frequent element in
	 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
	 * heap[0] is not used.
	 */
	state.ts.heap_len = 0, state.ts.heap_max = HEAP_SIZE;

	for (n = 0; n < elems; n++)
	{
		if (tree[n].fc.freq != 0)
		{
			state.ts.heap[++state.ts.heap_len] = max_code = n;
			state.ts.depth[n] = 0;
		}

		else
		{
			tree[n].dl.len = 0;
		}
	}

	/* The pkzip format requires that at least one distance code exists,
	 * and that at least one bit should be sent even if there is only one
	 * possible code. So to avoid special checks later on we force at least
	 * two codes of non zero frequency.
	 */
	while (state.ts.heap_len < 2)
	{
		int newcp = state.ts.heap[++state.ts.heap_len] = (max_code < 2 ? ++max_code : 0);
		tree[newcp].fc.freq = 1;
		state.ts.depth[newcp] = 0;
		state.ts.opt_len--;

		if (stree) state.ts.static_len -= stree[newcp].dl.len;

		/* new is 0 or 1 so it does not have extra bits */
	}

	desc->max_code = max_code;

	/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
	 * establish sub-heaps of increasing lengths:
	 */
	for (n = state.ts.heap_len / 2; n >= 1; n--) pqdownheap(state, tree, n);

	/* Construct the Huffman tree by repeatedly combining the least two
	 * frequent nodes.
	 */
	do
	{
		pqremove(tree, n);   /* n = node of least frequency */
		m = state.ts.heap[SMALLEST];  /* m = node of next least frequency */

		state.ts.heap[--state.ts.heap_max] = n; /* keep the nodes sorted by frequency */
		state.ts.heap[--state.ts.heap_max] = m;

		/* Create a new node father of n and m */
		tree[node].fc.freq = (ush)(tree[n].fc.freq + tree[m].fc.freq);
		state.ts.depth[node] = (uch) (Max(state.ts.depth[n], state.ts.depth[m]) + 1);
		tree[n].dl.dad = tree[m].dl.dad = (ush)node;
		/* and insert the new node in the heap */
		state.ts.heap[SMALLEST] = node++;
		pqdownheap(state, tree, SMALLEST);

	} while (state.ts.heap_len >= 2);

	state.ts.heap[--state.ts.heap_max] = state.ts.heap[SMALLEST];

	/* At this point, the fields freq and dad are set. We can now
	 * generate the bit lengths.
	 */
	gen_bitlen(state, (tree_desc *)desc);

	/* The field len is now set, we can generate the bit codes */
	gen_codes (state, (ct_data *)tree, max_code);
}

/* ===========================================================================
 * Scan a literal or distance tree to determine the frequencies of the codes
 * in the bit length tree. Updates opt_len to take into account the repeat
 * counts. (The contribution of the bit length codes will be added later
 * during the construction of bl_tree.)
 */
void scan_tree (TState &state, ct_data *tree, int max_code)
{
	int n;                     /* iterates over all tree elements */
	int prevlen = -1;          /* last emitted length */
	int curlen;                /* length of current code */
	int nextlen = tree[0].dl.len; /* length of next code */
	int count = 0;             /* repeat count of the current code */
	int max_count = 7;         /* max repeat count */
	int min_count = 4;         /* min repeat count */

	if (nextlen == 0) max_count = 138, min_count = 3;

	tree[max_code + 1].dl.len = (ush) - 1; /* guard */

	for (n = 0; n <= max_code; n++)
	{
		curlen = nextlen;
		nextlen = tree[n + 1].dl.len;

		if (++count < max_count && curlen == nextlen)
		{
			continue;
		}

		else if (count < min_count)
		{
			state.ts.bl_tree[curlen].fc.freq = (ush)(state.ts.bl_tree[curlen].fc.freq + count);
		}

		else if (curlen != 0)
		{
			if (curlen != prevlen) state.ts.bl_tree[curlen].fc.freq++;

			state.ts.bl_tree[REP_3_6].fc.freq++;
		}

		else if (count <= 10)
		{
			state.ts.bl_tree[REPZ_3_10].fc.freq++;
		}

		else
		{
			state.ts.bl_tree[REPZ_11_138].fc.freq++;
		}

		count = 0;
		prevlen = curlen;

		if (nextlen == 0)
		{
			max_count = 138, min_count = 3;
		}

		else if (curlen == nextlen)
		{
			max_count = 6, min_count = 3;
		}

		else
		{
			max_count = 7, min_count = 4;
		}
	}
}

/* ===========================================================================
 * Send a literal or distance tree in compressed form, using the codes in
 * bl_tree.
 */
void send_tree (TState &state, ct_data *tree, int max_code)
{
	int n;                     /* iterates over all tree elements */
	int prevlen = -1;          /* last emitted length */
	int curlen;                /* length of current code */
	int nextlen = tree[0].dl.len; /* length of next code */
	int count = 0;             /* repeat count of the current code */
	int max_count = 7;         /* max repeat count */
	int min_count = 4;         /* min repeat count */

	/* tree[max_code+1].dl.len = -1; */  /* guard already set */
	if (nextlen == 0) max_count = 138, min_count = 3;

	for (n = 0; n <= max_code; n++)
	{
		curlen = nextlen;
		nextlen = tree[n + 1].dl.len;

		if (++count < max_count && curlen == nextlen)
		{
			continue;
		}

		else if (count < min_count)
		{
			do
			{
				send_code(state, curlen, state.ts.bl_tree);
			} while (--count != 0);

		}

		else if (curlen != 0)
		{
			if (curlen != prevlen)
			{
				send_code(state, curlen, state.ts.bl_tree);
				count--;
			}

			Assert(state, count >= 3 && count <= 6, " 3_6?");
			send_code(state, REP_3_6, state.ts.bl_tree);
			send_bits(state, count - 3, 2);

		}

		else if (count <= 10)
		{
			send_code(state, REPZ_3_10, state.ts.bl_tree);
			send_bits(state, count - 3, 3);

		}

		else
		{
			send_code(state, REPZ_11_138, state.ts.bl_tree);
			send_bits(state, count - 11, 7);
		}

		count = 0;
		prevlen = curlen;

		if (nextlen == 0)
		{
			max_count = 138, min_count = 3;
		}

		else if (curlen == nextlen)
		{
			max_count = 6, min_count = 3;
		}

		else
		{
			max_count = 7, min_count = 4;
		}
	}
}

/* ===========================================================================
 * Construct the Huffman tree for the bit lengths and return the index in
 * bl_order of the last bit length code to send.
 */
int build_bl_tree(TState &state)
{
	int max_blindex;  /* index of last bit length code of non zero freq */

	/* Determine the bit length frequencies for literal and distance trees */
	scan_tree(state, (ct_data *)state.ts.dyn_ltree, state.ts.l_desc.max_code);
	scan_tree(state, (ct_data *)state.ts.dyn_dtree, state.ts.d_desc.max_code);

	/* Build the bit length tree: */
	build_tree(state, (tree_desc *)(&state.ts.bl_desc));
	/* opt_len now includes the length of the tree representations, except
	 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
	 */

	/* Determine the number of bit length codes to send. The pkzip format
	 * requires that at least 4 bit length codes be sent. (appnote.txt says
	 * 3 but the actual value used is 4.)
	 */
	for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--)
	{
		if (state.ts.bl_tree[bl_order[max_blindex]].dl.len != 0) break;
	}

	/* Update opt_len to include the bit length tree and counts */
	state.ts.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
	Trace("\ndyn trees: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);

	return max_blindex;
}

/* ===========================================================================
 * Send the header for a block using dynamic Huffman trees: the counts, the
 * lengths of the bit length codes, the literal tree and the distance tree.
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 */
void send_all_trees(TState &state, int lcodes, int dcodes, int blcodes)
{
	int rank;                    /* index in bl_order */

	Assert(state, lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
	Assert(state, lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
	    "too many codes");
	Trace("\nbl counts: ");
	send_bits(state, lcodes - 257, 5);
	/* not +255 as stated in appnote.txt 1.93a or -256 in 2.04c */
	send_bits(state, dcodes - 1,   5);
	send_bits(state, blcodes - 4,  4); /* not -3 as stated in appnote.txt */

	for (rank = 0; rank < blcodes; rank++)
	{
		Trace("\nbl code %2d ", bl_order[rank]);
		send_bits(state, state.ts.bl_tree[bl_order[rank]].dl.len, 3);
	}

	Trace("\nbl tree: sent %ld", state.bs.bits_sent);

	send_tree(state, (ct_data *)state.ts.dyn_ltree, lcodes - 1); /* send the literal tree */
	Trace("\nlit tree: sent %ld", state.bs.bits_sent);

	send_tree(state, (ct_data *)state.ts.dyn_dtree, dcodes - 1); /* send the distance tree */
	Trace("\ndist tree: sent %ld", state.bs.bits_sent);
}

/* ===========================================================================
 * Determine the best encoding for the current block: dynamic trees, static
 * trees or store, and output the encoded block to the zip file. This function
 * returns the total compressed length (in bytes) for the file so far.
 */
ulg flush_block(TState &state, char *buf, ulg stored_len, int eof)
{
	ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
	int max_blindex;  /* index of last bit length code of non zero freq */

	state.ts.flag_buf[state.ts.last_flags] = state.ts.flags; /* Save the flags for the last 8 items */

	/* Check if the file is ascii or binary */
	if (*state.ts.file_type == (ush)UNKNOWN) set_file_type(state);

	/* Construct the literal and distance trees */
	build_tree(state, (tree_desc *)(&state.ts.l_desc));
	Trace("\nlit data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);

	build_tree(state, (tree_desc *)(&state.ts.d_desc));
	Trace("\ndist data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);
	/* At this point, opt_len and static_len are the total bit lengths of
	 * the compressed block data, excluding the tree representations.
	 */

	/* Build the bit length tree for the above two trees, and get the index
	 * in bl_order of the last bit length code to send.
	 */
	max_blindex = build_bl_tree(state);

	/* Determine the best encoding. Compute first the block length in bytes */
	opt_lenb = (state.ts.opt_len + 3 + 7) >> 3;
	static_lenb = (state.ts.static_len + 3 + 7) >> 3;
	state.ts.input_len += stored_len; /* for debugging only */

	Trace("\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
	    opt_lenb, state.ts.opt_len, static_lenb, state.ts.static_len, stored_len,
	    state.ts.last_lit, state.ts.last_dist);

	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;

	// Originally, zip allowed the file to be transformed from a compressed
	// into a stored file in the case where compression failed, there
	// was only one block, and it was allowed to change. I've removed this
	// possibility since the code's cleaner if no changes are allowed.
	//if (stored_len <= opt_lenb && eof && state.ts.cmpr_bytelen == 0L
	//   && state.ts.cmpr_len_bits == 0L && state.seekable)
	//{   // && state.ts.file_method != NULL
	//    // Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there:
	//    Assert(state,buf!=NULL,"block vanished");
	//    copy_block(state,buf, (unsigned)stored_len, 0); // without header
	//    state.ts.cmpr_bytelen = stored_len;
	//    Assert(state,false,"unimplemented *state.ts.file_method = STORE;");
	//    //*state.ts.file_method = STORE;
	//}
	//else
	if (stored_len + 4 <= opt_lenb && buf != (char *)NULL)
	{
		/* 4: two words for the lengths */
		/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
		 * Otherwise we can't have processed more than WSIZE input bytes since
		 * the last block flush, because compression would have been
		 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
		 * transform a block into a stored block.
		 */
		send_bits(state, (STORED_BLOCK << 1) + eof, 3); /* send block type */
		state.ts.cmpr_bytelen += ((state.ts.cmpr_len_bits + 3 + 7) >> 3) + stored_len + 4;
		state.ts.cmpr_len_bits = 0L;

		copy_block(state, buf, (unsigned)stored_len, 1); /* with header */
	}

	else if (static_lenb == opt_lenb)
	{
		send_bits(state, (STATIC_TREES << 1) + eof, 3);
		compress_block(state, (ct_data *)state.ts.static_ltree, (ct_data *)state.ts.static_dtree);
		state.ts.cmpr_len_bits += 3 + state.ts.static_len;
		state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3;
		state.ts.cmpr_len_bits &= 7L;
	}

	else
	{
		send_bits(state, (DYN_TREES << 1) + eof, 3);
		send_all_trees(state, state.ts.l_desc.max_code + 1, state.ts.d_desc.max_code + 1, max_blindex + 1);
		compress_block(state, (ct_data *)state.ts.dyn_ltree, (ct_data *)state.ts.dyn_dtree);
		state.ts.cmpr_len_bits += 3 + state.ts.opt_len;
		state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3;
		state.ts.cmpr_len_bits &= 7L;
	}

	Assert(state, ((state.ts.cmpr_bytelen << 3) + state.ts.cmpr_len_bits) == state.bs.bits_sent, "bad compressed size");
	init_block(state);

	if (eof)
	{
		// Assert(state,input_len == isize, "bad input size");
		bi_windup(state);
		state.ts.cmpr_len_bits += 7;  /* align on byte boundary */
	}

	Trace("\n");

	return state.ts.cmpr_bytelen + (state.ts.cmpr_len_bits >> 3);
}

/* ===========================================================================
 * Save the match info and tally the frequency counts. Return true if
 * the current block must be flushed.
 */
int ct_tally (TState &state, int dist, int lc)
{
	state.ts.l_buf[state.ts.last_lit++] = (uch)lc;

	if (dist == 0)
	{
		/* lc is the unmatched char */
		state.ts.dyn_ltree[lc].fc.freq++;
	}

	else
	{
		/* Here, lc is the match length - MIN_MATCH */
		dist--;             /* dist = match distance - 1 */
		Assert(state, (ush)dist < (ush)MAX_DIST &&
		    (ush)lc <= (ush)(MAX_MATCH - MIN_MATCH) &&
		    (ush)d_code(dist) < (ush)D_CODES,  "ct_tally: bad match");

		state.ts.dyn_ltree[state.ts.length_code[lc] + LITERALS + 1].fc.freq++;
		state.ts.dyn_dtree[d_code(dist)].fc.freq++;

		state.ts.d_buf[state.ts.last_dist++] = (ush)dist;
		state.ts.flags |= state.ts.flag_bit;
	}

	state.ts.flag_bit <<= 1;

	/* Output the flags if they fill a byte: */
	if ((state.ts.last_lit & 7) == 0)
	{
		state.ts.flag_buf[state.ts.last_flags++] = state.ts.flags;
		state.ts.flags = 0, state.ts.flag_bit = 1;
	}

	/* Try to guess if it is profitable to stop the current block here */
	if (state.level > 2 && (state.ts.last_lit & 0xfff) == 0)
	{
		/* Compute an upper bound for the compressed length */
		ulg out_length = (ulg)state.ts.last_lit * 8L;
		ulg in_length = (ulg)state.ds.strstart - state.ds.block_start;
		int dcode;

		for (dcode = 0; dcode < D_CODES; dcode++)
		{
			out_length += (ulg)state.ts.dyn_dtree[dcode].fc.freq * (5L + extra_dbits[dcode]);
		}

		out_length >>= 3;
		Trace("\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
		    state.ts.last_lit, state.ts.last_dist, in_length, out_length,
		    100L - out_length * 100L / in_length);

		if (state.ts.last_dist < state.ts.last_lit / 2 && out_length < in_length / 2) return 1;
	}

	return (state.ts.last_lit == LIT_BUFSIZE - 1 || state.ts.last_dist == DIST_BUFSIZE);
	/* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
	 * on 16 bit machines and because stored blocks are restricted to
	 * 64K-1 bytes.
	 */
}

/* ===========================================================================
 * Send the block data compressed using the given Huffman trees
 */
void compress_block(TState &state, ct_data *ltree, ct_data *dtree)
{
	unsigned dist;      /* distance of matched string */
	int lc;             /* match length or unmatched char (if dist == 0) */
	unsigned lx = 0;    /* running index in l_buf */
	unsigned dx = 0;    /* running index in d_buf */
	unsigned fx = 0;    /* running index in flag_buf */
	uch flag = 0;       /* current flags */
	unsigned code;      /* the code to send */
	int extra;          /* number of extra bits to send */

	if (state.ts.last_lit != 0) do
		{
			if ((lx & 7) == 0) flag = state.ts.flag_buf[fx++];

			lc = state.ts.l_buf[lx++];

			if ((flag & 1) == 0)
			{
				send_code(state, lc, ltree); /* send a literal byte */
			}

			else
			{
				/* Here, lc is the match length - MIN_MATCH */
				code = state.ts.length_code[lc];
				send_code(state, code + LITERALS + 1, ltree); /* send the length code */
				extra = extra_lbits[code];

				if (extra != 0)
				{
					lc -= state.ts.base_length[code];
					send_bits(state, lc, extra);       /* send the extra length bits */
				}

				dist = state.ts.d_buf[dx++];
				/* Here, dist is the match distance - 1 */
				code = d_code(dist);
				Assert(state, code < D_CODES, "bad d_code");

				send_code(state, code, dtree);      /* send the distance code */
				extra = extra_dbits[code];

				if (extra != 0)
				{
					dist -= state.ts.base_dist[code];
					send_bits(state, dist, extra);  /* send the extra distance bits */
				}
			} /* literal or match pair ? */

			flag >>= 1;
		} while (lx < state.ts.last_lit);

	send_code(state, END_BLOCK, ltree);
}

/* ===========================================================================
 * Set the file type to ASCII or BINARY, using a crude approximation:
 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
 * IN assertion: the fields freq of dyn_ltree are set and the total of all
 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
 */
void set_file_type(TState &state)
{
	int n = 0;
	unsigned ascii_freq = 0;
	unsigned bin_freq = 0;

	while (n < 7)        bin_freq += state.ts.dyn_ltree[n++].fc.freq;

	while (n < 128)    ascii_freq += state.ts.dyn_ltree[n++].fc.freq;

	while (n < LITERALS) bin_freq += state.ts.dyn_ltree[n++].fc.freq;

	*state.ts.file_type = (ush)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII);
}


/* ===========================================================================
 * Initialize the bit string routines.
 */
void bi_init (TState &state, char *tgt_buf, unsigned tgt_size, int flsh_allowed)
{
	state.bs.out_buf = tgt_buf;
	state.bs.out_size = tgt_size;
	state.bs.out_offset = 0;
	state.bs.flush_flg = flsh_allowed;

	state.bs.bi_buf = 0;
	state.bs.bi_valid = 0;
	state.bs.bits_sent = 0L;
}

/* ===========================================================================
 * Send a value on a given number of bits.
 * IN assertion: length <= 16 and value fits in length bits.
 */
void send_bits(TState &state, int value, int length)
{
	Assert(state, length > 0 && length <= 15, "invalid length");
	state.bs.bits_sent += (ulg)length;
	/* If not enough room in bi_buf, use (bi_valid) bits from bi_buf and
	 * (Buf_size - bi_valid) bits from value to flush the filled bi_buf,
	 * then fill in the rest of (value), leaving (length - (Buf_size-bi_valid))
	 * unused bits in bi_buf.
	 */
	state.bs.bi_buf |= (value << state.bs.bi_valid);
	state.bs.bi_valid += length;

	if (state.bs.bi_valid > (int)Buf_size)
	{
		PUTSHORT(state, state.bs.bi_buf);
		state.bs.bi_valid -= Buf_size;
		state.bs.bi_buf = (unsigned)value >> (length - state.bs.bi_valid);
	}
}

/* ===========================================================================
 * Reverse the first len bits of a code, using straightforward code (a faster
 * method would use a table)
 * IN assertion: 1 <= len <= 15
 */
unsigned bi_reverse(unsigned code, int len)
{
	register unsigned res = 0;

	do
	{
		res |= code & 1;
		code >>= 1, res <<= 1;
	} while (--len > 0);

	return res >> 1;
}

/* ===========================================================================
 * Write out any remaining bits in an incomplete byte.
 */
void bi_windup(TState &state)
{
	if (state.bs.bi_valid > 8)
	{
		PUTSHORT(state, state.bs.bi_buf);
	}

	else if (state.bs.bi_valid > 0)
	{
		PUTBYTE(state, state.bs.bi_buf);
	}

	if (state.bs.flush_flg)
	{
		state.flush_outbuf(state.param, state.bs.out_buf, &state.bs.out_offset);
	}

	state.bs.bi_buf = 0;
	state.bs.bi_valid = 0;
	state.bs.bits_sent = (state.bs.bits_sent + 7) & ~7;
}

/* ===========================================================================
 * Copy a stored block to the zip file, storing first the length and its
 * one's complement if requested.
 */
void copy_block(TState &state, char *block, unsigned len, int header)
{
	bi_windup(state);              /* align on byte boundary */

	if (header)
	{
		PUTSHORT(state, (ush)len);
		PUTSHORT(state, (ush)~len);
		state.bs.bits_sent += 2 * 16;
	}

	if (state.bs.flush_flg)
	{
		state.flush_outbuf(state.param, state.bs.out_buf, &state.bs.out_offset);
		state.bs.out_offset = len;
		state.flush_outbuf(state.param, block, &state.bs.out_offset);
	}

	else if (state.bs.out_offset + len > state.bs.out_size)
	{
		Assert(state, false, "output buffer too small for in-memory compression");
	}

	else
	{
		memcpy(state.bs.out_buf + state.bs.out_offset, block, len);
		state.bs.out_offset += len;
	}

	state.bs.bits_sent += (ulg)len << 3;
}








/* ===========================================================================
 *  Prototypes for functions.
 */

void fill_window  (TState &state);
ulg deflate_fast  (TState &state);

int  longest_match (TState &state, IPos cur_match);


/* ===========================================================================
 * Update a hash value with the given input byte
 * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
 *    input characters, so that a running hash key can be computed from the
 *    previous key instead of complete recalculation each time.
 */
#define UPDATE_HASH(h,c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)

/* ===========================================================================
 * Insert string s in the dictionary and set match_head to the previous head
 * of the hash chain (the most recent string with same hash key). Return
 * the previous length of the hash chain.
 * IN  assertion: all calls to to INSERT_STRING are made with consecutive
 *    input characters and the first MIN_MATCH bytes of s are valid
 *    (except for the last MIN_MATCH-1 bytes of the input file).
 */
#define INSERT_STRING(s, match_head) \
   (UPDATE_HASH(state.ds.ins_h, state.ds.window[(s) + (MIN_MATCH-1)]), \
    state.ds.prev[(s) & WMASK] = match_head = state.ds.head[state.ds.ins_h], \
    state.ds.head[state.ds.ins_h] = (s))

/* ===========================================================================
 * Initialize the "longest match" routines for a new file
 *
 * IN assertion: window_size is > 0 if the input file is already read or
 *    mmap'ed in the window[] array, 0 otherwise. In the first case,
 *    window_size is sufficient to contain the whole input file plus
 *    MIN_LOOKAHEAD bytes (to avoid referencing memory beyond the end
 *    of window[] when looking for matches towards the end).
 */
void lm_init (TState &state, int pack_level, ush *flags)
{
	register unsigned j;

	Assert(state, pack_level >= 1 && pack_level <= 8, "bad pack level");

	/* Do not slide the window if the whole input is already in memory
	 * (window_size > 0)
	 */
	state.ds.sliding = 0;

	if (state.ds.window_size == 0L)
	{
		state.ds.sliding = 1;
		state.ds.window_size = (ulg)2L * WSIZE;
	}

	/* Initialize the hash table (avoiding 64K overflow for 16 bit systems).
	 * prev[] will be initialized on the fly.
	 */
	state.ds.head[HASH_SIZE - 1] = NIL;
	memset((char *)state.ds.head, NIL, (unsigned)(HASH_SIZE - 1)*sizeof(*state.ds.head));

	/* Set the default configuration parameters:
	 */
	state.ds.max_lazy_match   = configuration_table[pack_level].max_lazy;
	state.ds.good_match       = configuration_table[pack_level].good_length;
	state.ds.nice_match       = configuration_table[pack_level].nice_length;
	state.ds.max_chain_length = configuration_table[pack_level].max_chain;

	if (pack_level <= 2)
	{
		*flags |= FAST;
	}

	else if (pack_level >= 8)
	{
		*flags |= SLOW;
	}

	/* ??? reduce max_chain_length for binary files */

	state.ds.strstart = 0;
	state.ds.block_start = 0L;

	j = WSIZE;
	j <<= 1; // Can read 64K in one step
	state.ds.lookahead = state.readfunc(state, (char *)state.ds.window, j);

	if (state.ds.lookahead == 0 || state.ds.lookahead == (unsigned)EOF)
	{
		state.ds.eofile = 1, state.ds.lookahead = 0;
		return;
	}

	state.ds.eofile = 0;

	/* Make sure that we always have enough lookahead. This is important
	 * if input comes from a device such as a tty.
	 */
	if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);

	state.ds.ins_h = 0;

	for (j = 0; j < MIN_MATCH - 1; j++) UPDATE_HASH(state.ds.ins_h, state.ds.window[j]);

	/* If lookahead < MIN_MATCH, ins_h is garbage, but this is
	 * not important since only literal bytes will be emitted.
	 */
}


/* ===========================================================================
 * Set match_start to the longest match starting at the given string and
 * return its length. Matches shorter or equal to prev_length are discarded,
 * in which case the result is equal to prev_length and match_start is
 * garbage.
 * IN assertions: cur_match is the head of the hash chain for the current
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 */
// For 80x86 and 680x0 and ARM, an optimized version is in match.asm or
// match.S. The code is functionally equivalent, so you can use the C version
// if desired. Which I do so desire!
int longest_match(TState &state, IPos cur_match)
{
	unsigned chain_length = state.ds.max_chain_length;   /* max hash chain length */
	register uch far *scan = state.ds.window + state.ds.strstart; /* current string */
	register uch far *match;                    /* matched string */
	register int len;                           /* length of current match */
	int best_len = state.ds.prev_length;                 /* best match length so far */
	IPos limit = state.ds.strstart > (IPos)MAX_DIST ? state.ds.strstart - (IPos)MAX_DIST : NIL;
	/* Stop when cur_match becomes <= limit. To simplify the code,
	 * we prevent matches with the string of window index 0.
	 */

	// The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
	// It is easy to get rid of this optimization if necessary.
	Assert(state, HASH_BITS >= 8 && MAX_MATCH == 258, "Code too clever");



	register uch far *strend = state.ds.window + state.ds.strstart + MAX_MATCH;
	register uch scan_end1  = scan[best_len - 1];
	register uch scan_end   = scan[best_len];

	/* Do not waste too much time if we already have a good match: */
	if (state.ds.prev_length >= state.ds.good_match)
	{
		chain_length >>= 2;
	}

	Assert(state, state.ds.strstart <= state.ds.window_size - MIN_LOOKAHEAD, "insufficient lookahead");

	do
	{
		Assert(state, cur_match < state.ds.strstart, "no future");
		match = state.ds.window + cur_match;

		/* Skip to next match if the match length cannot increase
		 * or if the match length is less than 2:
		 */
		if (match[best_len]   != scan_end  ||
		    match[best_len - 1] != scan_end1 ||
		    *match            != *scan     ||
		    *++match          != scan[1])      continue;

		/* The check at best_len-1 can be removed because it will be made
		 * again later. (This heuristic is not always a win.)
		 * It is not necessary to compare scan[2] and match[2] since they
		 * are always equal when the other bytes match, given that
		 * the hash keys are equal and that HASH_BITS >= 8.
		 */
		scan += 2, match++;

		/* We check for insufficient lookahead only every 8th comparison;
		 * the 256th check will be made at strstart+258.
		 */
		do
		{
		} while (*++scan == *++match && *++scan == *++match &&

		    *++scan == *++match && *++scan == *++match &&
		    *++scan == *++match && *++scan == *++match &&
		    *++scan == *++match && *++scan == *++match &&
		    scan < strend);

		Assert(state, scan <= state.ds.window + (unsigned)(state.ds.window_size - 1), "wild scan");

		len = MAX_MATCH - (int)(strend - scan);
		scan = strend - MAX_MATCH;


		if (len > best_len)
		{
			state.ds.match_start = cur_match;
			best_len = len;

			if (len >= state.ds.nice_match) break;

			scan_end1  = scan[best_len - 1];
			scan_end   = scan[best_len];
		}
	} while ((cur_match = state.ds.prev[cur_match & WMASK]) > limit

	    && --chain_length != 0);

	return best_len;
}



#define check_match(state,start, match, length)
// or alternatively...
//void check_match(TState &state,IPos start, IPos match, int length)
//{ // check that the match is indeed a match
//    if (memcmp((char*)state.ds.window + match,
//                (char*)state.ds.window + start, length) != EQUAL) {
//        fprintf(stderr,
//            " start %d, match %d, length %d\n",
//            start, match, length);
//        error("invalid match");
//    }
//    if (state.verbose > 1) {
//        fprintf(stderr,"\\[%d,%d]", start-match, length);
//        do { fprintf(stdout,"%c",state.ds.window[start++]); } while (--length != 0);
//    }
//}

/* ===========================================================================
 * Fill the window when the lookahead becomes insufficient.
 * Updates strstart and lookahead, and sets eofile if end of input file.
 *
 * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
 *    At least one byte has been read, or eofile is set; file reads are
 *    performed for at least two bytes (required for the translate_eol option).
 */
void fill_window(TState &state)
{
	register unsigned n, m;
	unsigned more;    /* Amount of free space at the end of the window. */

	do
	{
		more = (unsigned)(state.ds.window_size - (ulg)state.ds.lookahead - (ulg)state.ds.strstart);

		/* If the window is almost full and there is insufficient lookahead,
		 * move the upper half to the lower one to make room in the upper half.
		 */
		if (more == (unsigned)EOF)
		{
			/* Very unlikely, but possible on 16 bit machine if strstart == 0
			 * and lookahead == 1 (input done one byte at time)
			 */
			more--;

			/* For MMAP or BIG_MEM, the whole input file is already in memory so
			 * we must not perform sliding. We must however call (*read_buf)() in
			 * order to compute the crc, update lookahead and possibly set eofile.
			 */
		}

		else if (state.ds.strstart >= WSIZE + MAX_DIST && state.ds.sliding)
		{

			/* By the IN assertion, the window is not empty so we can't confuse
			 * more == 0 with more == 64K on a 16 bit machine.
			 */
			memcpy((char *)state.ds.window, (char *)state.ds.window + WSIZE, (unsigned)WSIZE);
			state.ds.match_start -= WSIZE;
			state.ds.strstart    -= WSIZE; /* we now have strstart >= MAX_DIST: */

			state.ds.block_start -= (long) WSIZE;

			for (n = 0; n < HASH_SIZE; n++)
			{
				m = state.ds.head[n];
				state.ds.head[n] = (Pos)(m >= WSIZE ? m - WSIZE : NIL);
			}

			for (n = 0; n < WSIZE; n++)
			{
				m = state.ds.prev[n];
				state.ds.prev[n] = (Pos)(m >= WSIZE ? m - WSIZE : NIL);
				/* If n is not on any hash chain, prev[n] is garbage but
				 * its value will never be used.
				 */
			}

			more += WSIZE;
		}

		if (state.ds.eofile) return;

		/* If there was no sliding:
		 *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
		 *    more == window_size - lookahead - strstart
		 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
		 * => more >= window_size - 2*WSIZE + 2
		 * In the MMAP or BIG_MEM case (not yet supported in gzip),
		 *   window_size == input_size + MIN_LOOKAHEAD  &&
		 *   strstart + lookahead <= input_size => more >= MIN_LOOKAHEAD.
		 * Otherwise, window_size == 2*WSIZE so more >= 2.
		 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
		 */
		Assert(state, more >= 2, "more < 2");

		n = state.readfunc(state, (char *)state.ds.window + state.ds.strstart + state.ds.lookahead, more);

		if (n == 0 || n == (unsigned)EOF)
		{
			state.ds.eofile = 1;
		}

		else
		{
			state.ds.lookahead += n;
		}
	} while (state.ds.lookahead < MIN_LOOKAHEAD && !state.ds.eofile);
}

/* ===========================================================================
 * Flush the current block, with given end-of-file flag.
 * IN assertion: strstart is set to the end of the current match.
 */
#define FLUSH_BLOCK(state,eof) \
   flush_block(state,state.ds.block_start >= 0L ? (char*)&state.ds.window[(unsigned)state.ds.block_start] : \
                (char*)NULL, (long)state.ds.strstart - state.ds.block_start, (eof))

/* ===========================================================================
 * Processes a new input file and return its compressed length. This
 * function does not perform lazy evaluation of matches and inserts
 * new strings in the dictionary only for unmatched strings or for short
 * matches. It is used only for the fast compression options.
 */
ulg deflate_fast(TState &state)
{
	IPos hash_head = NIL;       /* head of the hash chain */
	int flush;                  /* set if current block must be flushed */
	unsigned match_length = 0;  /* length of best match */

	state.ds.prev_length = MIN_MATCH - 1;

	while (state.ds.lookahead != 0)
	{
		/* Insert the string window[strstart .. strstart+2] in the
		 * dictionary, and set hash_head to the head of the hash chain:
		 */
		if (state.ds.lookahead >= MIN_MATCH)
			INSERT_STRING(state.ds.strstart, hash_head);

		/* Find the longest match, discarding those <= prev_length.
		 * At this point we have always match_length < MIN_MATCH
		 */
		if (hash_head != NIL && state.ds.strstart - hash_head <= MAX_DIST)
		{
			/* To simplify the code, we prevent matches with the string
			 * of window index 0 (in particular we have to avoid a match
			 * of the string with itself at the start of the input file).
			 */
			/* Do not look for matches beyond the end of the input.
			 * This is necessary to make deflate deterministic.
			 */
			if ((unsigned)state.ds.nice_match > state.ds.lookahead) state.ds.nice_match = (int)state.ds.lookahead;

			match_length = longest_match (state, hash_head);

			/* longest_match() sets match_start */
			if (match_length > state.ds.lookahead) match_length = state.ds.lookahead;
		}

		if (match_length >= MIN_MATCH)
		{
			check_match(state, state.ds.strstart, state.ds.match_start, match_length);

			flush = ct_tally(state, state.ds.strstart - state.ds.match_start, match_length - MIN_MATCH);

			state.ds.lookahead -= match_length;

			/* Insert new strings in the hash table only if the match length
			 * is not too large. This saves time but degrades compression.
			 */
			if (match_length <= state.ds.max_insert_length
			    && state.ds.lookahead >= MIN_MATCH)
			{
				match_length--; /* string at strstart already in hash table */

				do
				{
					state.ds.strstart++;
					INSERT_STRING(state.ds.strstart, hash_head);
					/* strstart never exceeds WSIZE-MAX_MATCH, so there are
					 * always MIN_MATCH bytes ahead.
					 */
				} while (--match_length != 0);

				state.ds.strstart++;
			}

			else
			{
				state.ds.strstart += match_length;
				match_length = 0;
				state.ds.ins_h = state.ds.window[state.ds.strstart];
				UPDATE_HASH(state.ds.ins_h, state.ds.window[state.ds.strstart + 1]);
				Assert(state, MIN_MATCH == 3, "Call UPDATE_HASH() MIN_MATCH-3 more times");
			}
		}

		else
		{
			/* No match, output a literal byte */
			flush = ct_tally (state, 0, state.ds.window[state.ds.strstart]);
			state.ds.lookahead--;
			state.ds.strstart++;
		}

		if (flush) FLUSH_BLOCK(state, 0), state.ds.block_start = state.ds.strstart;

		/* Make sure that we always have enough lookahead, except
		 * at the end of the input file. We need MAX_MATCH bytes
		 * for the next match, plus MIN_MATCH bytes to insert the
		 * string following the next match.
		 */
		if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);
	}

	return FLUSH_BLOCK(state, 1); /* eof */
}

/* ===========================================================================
 * Same as above, but achieves better compression. We use a lazy
 * evaluation for matches: a match is finally adopted only if there is
 * no better match at the next window position.
 */
ulg deflate(TState &state)
{
	IPos hash_head = NIL;       /* head of hash chain */
	IPos prev_match;            /* previous match */
	int flush;                  /* set if current block must be flushed */
	int match_available = 0;    /* set if previous match exists */
	register unsigned match_length = MIN_MATCH - 1; /* length of best match */

	if (state.level <= 3) return deflate_fast(state); /* optimized for speed */

	/* Process the input block. */
	while (state.ds.lookahead != 0)
	{
		/* Insert the string window[strstart .. strstart+2] in the
		 * dictionary, and set hash_head to the head of the hash chain:
		 */
		if (state.ds.lookahead >= MIN_MATCH)
			INSERT_STRING(state.ds.strstart, hash_head);

		/* Find the longest match, discarding those <= prev_length.
		 */
		state.ds.prev_length = match_length, prev_match = state.ds.match_start;
		match_length = MIN_MATCH - 1;

		if (hash_head != NIL && state.ds.prev_length < state.ds.max_lazy_match &&
		    state.ds.strstart - hash_head <= MAX_DIST)
		{
			/* To simplify the code, we prevent matches with the string
			 * of window index 0 (in particular we have to avoid a match
			 * of the string with itself at the start of the input file).
			 */
			/* Do not look for matches beyond the end of the input.
			 * This is necessary to make deflate deterministic.
			 */
			if ((unsigned)state.ds.nice_match > state.ds.lookahead) state.ds.nice_match = (int)state.ds.lookahead;

			match_length = longest_match (state, hash_head);

			/* longest_match() sets match_start */
			if (match_length > state.ds.lookahead) match_length = state.ds.lookahead;

			/* Ignore a length 3 match if it is too distant: */
			if (match_length == MIN_MATCH && state.ds.strstart - state.ds.match_start > TOO_FAR)
			{
				/* If prev_match is also MIN_MATCH, match_start is garbage
				 * but we will ignore the current match anyway.
				 */
				match_length = MIN_MATCH - 1;
			}
		}

		/* If there was a match at the previous step and the current
		 * match is not better, output the previous match:
		 */
		if (state.ds.prev_length >= MIN_MATCH && match_length <= state.ds.prev_length)
		{
			unsigned max_insert = state.ds.strstart + state.ds.lookahead - MIN_MATCH;
			check_match(state, state.ds.strstart - 1, prev_match, state.ds.prev_length);
			flush = ct_tally(state, state.ds.strstart - 1 - prev_match, state.ds.prev_length - MIN_MATCH);

			/* Insert in hash table all strings up to the end of the match.
			 * strstart-1 and strstart are already inserted.
			 */
			state.ds.lookahead -= state.ds.prev_length - 1;
			state.ds.prev_length -= 2;

			do
			{
				if (++state.ds.strstart <= max_insert)
				{
					INSERT_STRING(state.ds.strstart, hash_head);
					/* strstart never exceeds WSIZE-MAX_MATCH, so there are
					 * always MIN_MATCH bytes ahead.
					 */
				}
			} while (--state.ds.prev_length != 0);

			state.ds.strstart++;
			match_available = 0;
			match_length = MIN_MATCH - 1;

			if (flush) FLUSH_BLOCK(state, 0), state.ds.block_start = state.ds.strstart;

		}

		else if (match_available)
		{
			/* If there was no match at the previous position, output a
			 * single literal. If there was a match but the current match
			 * is longer, truncate the previous match to a single literal.
			 */
			if (ct_tally (state, 0, state.ds.window[state.ds.strstart - 1]))
			{
				FLUSH_BLOCK(state, 0), state.ds.block_start = state.ds.strstart;
			}

			state.ds.strstart++;
			state.ds.lookahead--;
		}

		else
		{
			/* There is no previous match to compare with, wait for
			 * the next step to decide.
			 */
			match_available = 1;
			state.ds.strstart++;
			state.ds.lookahead--;
		}

		//        Assert(state,strstart <= isize && lookahead <= isize, "a bit too far");

		/* Make sure that we always have enough lookahead, except
		 * at the end of the input file. We need MAX_MATCH bytes
		 * for the next match, plus MIN_MATCH bytes to insert the
		 * string following the next match.
		 */
		if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);
	}

	if (match_available) ct_tally (state, 0, state.ds.window[state.ds.strstart - 1]);

	return FLUSH_BLOCK(state, 1); /* eof */
}












int putlocal(struct zlist far *z, WRITEFUNC wfunc, void *param)
{
	// Write a local header described by *z to file *f.  Return a ZE_ error code.
	PUTLG(LOCSIG, f);
	PUTSH(z->ver, f);
	PUTSH(z->lflg, f);
	PUTSH(z->how, f);
	PUTLG(z->tim, f);
	PUTLG(z->crc, f);
	PUTLG(z->siz, f);
	PUTLG(z->len, f);
	PUTSH(z->nam, f);
	PUTSH(z->ext, f);
	size_t res = (size_t)wfunc(param, z->iname, (unsigned int)z->nam);

	if (res != z->nam) return ZE_TEMP;

	if (z->ext)
	{
		res = (size_t)wfunc(param, z->extra, (unsigned int)z->ext);

		if (res != z->ext) return ZE_TEMP;
	}

	return ZE_OK;
}

int putextended(struct zlist far *z, WRITEFUNC wfunc, void *param)
{
	// Write an extended local header described by *z to file *f. Returns a ZE_ code
	PUTLG(EXTLOCSIG, f);
	PUTLG(z->crc, f);
	PUTLG(z->siz, f);
	PUTLG(z->len, f);
	return ZE_OK;
}

int putcentral(struct zlist far *z, WRITEFUNC wfunc, void *param)
{
	// Write a central header entry of *z to file *f. Returns a ZE_ code.
	PUTLG(CENSIG, f);
	PUTSH(z->vem, f);
	PUTSH(z->ver, f);
	PUTSH(z->flg, f);
	PUTSH(z->how, f);
	PUTLG(z->tim, f);
	PUTLG(z->crc, f);
	PUTLG(z->siz, f);
	PUTLG(z->len, f);
	PUTSH(z->nam, f);
	PUTSH(z->cext, f);
	PUTSH(z->com, f);
	PUTSH(z->dsk, f);
	PUTSH(z->att, f);
	PUTLG(z->atx, f);
	PUTLG(z->off, f);

	if ((size_t)wfunc(param, z->iname, (unsigned int)z->nam) != z->nam ||
	    (z->cext && (size_t)wfunc(param, z->cextra, (unsigned int)z->cext) != z->cext) ||
	    (z->com && (size_t)wfunc(param, z->comment, (unsigned int)z->com) != z->com))
		return ZE_TEMP;

	return ZE_OK;
}


int putend(int n, ulg s, ulg c, extent m, char *z, WRITEFUNC wfunc, void *param)
{
	// write the end of the central-directory-data to file *f.
	PUTLG(ENDSIG, f);
	PUTSH(0, f);
	PUTSH(0, f);
	PUTSH(n, f);
	PUTSH(n, f);
	PUTLG(s, f);
	PUTLG(c, f);
	PUTSH(m, f);

	// Write the comment, if any
	if (m && wfunc(param, z, (unsigned int)m) != m) return ZE_TEMP;

	return ZE_OK;
}






const ulg crc_table[256] =
{
	0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
	0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
	0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
	0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
	0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
	0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
	0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
	0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
	0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
	0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
	0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
	0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
	0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
	0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
	0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
	0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
	0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
	0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
	0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
	0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
	0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
	0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
	0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
	0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
	0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
	0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
	0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
	0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
	0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
	0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
	0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
	0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
	0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
	0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
	0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
	0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
	0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
	0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
	0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
	0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
	0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
	0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
	0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
	0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
	0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
	0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
	0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
	0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
	0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
	0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
	0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
	0x2d02ef8dL
};

#define CRC32(c, b) (crc_table[((int)(c) ^ (b)) & 0xff] ^ ((c) >> 8))
#define DO1(buf)  crc = CRC32(crc, *buf++)
#define DO2(buf)  DO1(buf); DO1(buf)
#define DO4(buf)  DO2(buf); DO2(buf)
#define DO8(buf)  DO4(buf); DO4(buf)

ulg crc32(ulg crc, const uch *buf, extent len)
{
	if (buf == NULL) return 0L;

	crc = crc ^ 0xffffffffL;

	while (len >= 8)
	{
		DO8(buf);
		len -= 8;
	}

	if (len) do
		{
			DO1(buf);
		} while (--len);

	return crc ^ 0xffffffffL;  // (instead of ~c for 64-bit machines)
}


void update_keys(unsigned long *keys, char c)
{
	keys[0] = CRC32(keys[0], c);
	keys[1] += keys[0] & 0xFF;
	keys[1] = keys[1] * 134775813L + 1;
	keys[2] = CRC32(keys[2], keys[1] >> 24);
}
char decrypt_byte(unsigned long *keys)
{
	unsigned temp = ((unsigned)keys[2] & 0xffff) | 2;
	return (char)(((temp * (temp ^ 1)) >> 8) & 0xff);
}
char zencode(unsigned long *keys, char c)
{
	int t = decrypt_byte(keys);
	update_keys(keys, c);
	return (char)(t ^ c);
}







bool HasZipSuffix(const TCHAR *fn)
{
	const TCHAR *ext = fn + _tcslen(fn);

	while (ext > fn && *ext != '.') ext--;

	if (ext == fn && *ext != '.') return false;

	if (_tcsicmp(ext, _T(".Z")) == 0) return true;

	if (_tcsicmp(ext, _T(".zip")) == 0) return true;

	if (_tcsicmp(ext, _T(".zoo")) == 0) return true;

	if (_tcsicmp(ext, _T(".arc")) == 0) return true;

	if (_tcsicmp(ext, _T(".lzh")) == 0) return true;

	if (_tcsicmp(ext, _T(".arj")) == 0) return true;

	if (_tcsicmp(ext, _T(".gz")) == 0) return true;

	if (_tcsicmp(ext, _T(".tgz")) == 0) return true;

	return false;
}


lutime_t filetime2timet(const FILETIME ft)
{
	__int64 i = *(__int64 *)&ft;
	return (lutime_t)((i - 116444736000000000) / 10000000);
}

void filetime2dosdatetime(const FILETIME ft, WORD *dosdate, WORD *dostime)
{
	// date: bits 0-4 are day of month 1-31. Bits 5-8 are month 1..12. Bits 9-15 are year-1980
	// time: bits 0-4 are seconds/2, bits 5-10 are minute 0..59. Bits 11-15 are hour 0..23
	SYSTEMTIME st;
	FileTimeToSystemTime(&ft, &st);
	*dosdate = (WORD)(((st.wYear - 1980) & 0x7f) << 9);
	*dosdate |= (WORD)((st.wMonth & 0xf) << 5);
	*dosdate |= (WORD)((st.wDay & 0x1f));
	*dostime = (WORD)((st.wHour & 0x1f) << 11);
	*dostime |= (WORD)((st.wMinute & 0x3f) << 5);
	*dostime |= (WORD)((st.wSecond * 2) & 0x1f);
}


ZRESULT GetFileInfo(HANDLE hf, ulg *attr, long *size, iztimes *times, ulg *timestamp)
{
	// The handle must be a handle to a file
	// The date and time is returned in a long with the date most significant to allow
	// unsigned integer comparison of absolute times. The attributes have two
	// high bytes unix attr, and two low bytes a mapping of that to DOS attr.
	//struct stat s; int res=stat(fn,&s); if (res!=0) return false;
	// translate windows file attributes into zip ones.
	BY_HANDLE_FILE_INFORMATION bhi;
	BOOL res = GetFileInformationByHandle(hf, &bhi);

	if (!res) return ZR_NOFILE;

	DWORD fa = bhi.dwFileAttributes;
	ulg a = 0;

	// Zip uses the lower word for its interpretation of windows stuff
	if (fa & FILE_ATTRIBUTE_READONLY) a |= 0x01;

	if (fa & FILE_ATTRIBUTE_HIDDEN)   a |= 0x02;

	if (fa & FILE_ATTRIBUTE_SYSTEM)   a |= 0x04;

	if (fa & FILE_ATTRIBUTE_DIRECTORY)a |= 0x10;

	if (fa & FILE_ATTRIBUTE_ARCHIVE)  a |= 0x20;

	// It uses the upper word for standard unix attr, which we manually construct
	if (fa & FILE_ATTRIBUTE_DIRECTORY)a |= 0x40000000; // directory

	else a |= 0x80000000; // normal file

	a |= 0x01000000;    // readable

	if (fa & FILE_ATTRIBUTE_READONLY) {}
	else a |= 0x00800000;   // writeable

	// now just a small heuristic to check if it's an executable:
	DWORD red, hsize = GetFileSize(hf, NULL);

	if (hsize > 40)
	{
		SetFilePointer(hf, 0, NULL, FILE_BEGIN);
		unsigned short magic;
		ReadFile(hf, &magic, sizeof(magic), &red, NULL);
		SetFilePointer(hf, 36, NULL, FILE_BEGIN);
		unsigned long hpos;
		ReadFile(hf, &hpos, sizeof(hpos), &red, NULL);

		if (magic == 0x54AD && hsize > hpos + 4 + 20 + 28)
		{
			SetFilePointer(hf, hpos, NULL, FILE_BEGIN);
			unsigned long signature;
			ReadFile(hf, &signature, sizeof(signature), &red, NULL);

			if (signature == IMAGE_DOS_SIGNATURE || signature == IMAGE_OS2_SIGNATURE
			    || signature == IMAGE_OS2_SIGNATURE_LE || signature == IMAGE_NT_SIGNATURE)
			{
				a |= 0x00400000; // executable
			}
		}
	}

	//
	if (attr != NULL) *attr = a;

	if (size != NULL) *size = hsize;

	if (times != NULL)
	{
		// lutime_t is 32bit number of seconds elapsed since 0:0:0GMT, Jan1, 1970.
		// but FILETIME is 64bit number of 100-nanosecs since Jan1, 1601
		times->atime = filetime2timet(bhi.ftLastAccessTime);
		times->mtime = filetime2timet(bhi.ftLastWriteTime);
		times->ctime = filetime2timet(bhi.ftCreationTime);
	}

	if (timestamp != NULL)
	{
		WORD dosdate, dostime;
		filetime2dosdatetime(bhi.ftLastWriteTime, &dosdate, &dostime);
		*timestamp = (WORD)dostime | (((DWORD)dosdate) << 16);
	}

	return ZR_OK;
}








class TZip {
public:
	TZip(const char *pwd) : hfout(0), mustclosehfout(false), hmapout(0), zfis(0), obuf(0), hfin(0), writ(0), oerr(false), hasputcen(false), ooffset(0), encwriting(false), encbuf(0), password(0), state(0) {
		if (pwd != 0 && *pwd != 0) {
			password = new char[strlen(pwd) + 1];
			strcpy(password, pwd);
		}
	}
	~TZip() {
		if (state != 0) delete state;

		state = 0;

		if (encbuf != 0) delete[] encbuf;

		encbuf = 0;

		if (password != 0) delete[] password;

		password = 0;
	}

	// These variables say about the file we're writing into
	// We can write to pipe, file-by-handle, file-by-name, memory-to-memmapfile
	char *password;           // keep a copy of the password
	HANDLE hfout;             // if valid, we'll write here (for files or pipes)
	bool mustclosehfout;      // if true, we are responsible for closing hfout
	HANDLE hmapout;           // otherwise, we'll write here (for memmap)
	unsigned ooffset;         // for hfout, this is where the pointer was initially
	ZRESULT oerr;             // did a write operation give rise to an error?
	unsigned writ;            // how far have we written. This is maintained by Add, not write(), to avoid confusion over seeks
	bool ocanseek;            // can we seek?
	char *obuf;               // this is where we've locked mmap to view.
	unsigned int opos;        // current pos in the mmap
	unsigned int mapsize;     // the size of the map we created
	bool hasputcen;           // have we yet placed the central directory?
	bool encwriting;          // if true, then we'll encrypt stuff using 'keys' before we write it to disk
	unsigned long keys[3];    // keys are initialised inside Add()
	char *encbuf;             // if encrypting, then this is a temporary workspace for encrypting the data
	unsigned int encbufsize;  // (to be used and resized inside write(), and deleted in the destructor)
	//
	TZipFileInfo *zfis;       // each file gets added onto this list, for writing the table at the end
	TState *state;            // we use just one state object per zip, because it's big (500k)

	ZRESULT Create(void *z, unsigned int len, DWORD flags);
	static unsigned sflush(void *param, const char *buf, unsigned *size);
	static unsigned swrite(void *param, const char *buf, unsigned size);
	unsigned int write(const char *buf, unsigned int size);
	bool oseek(unsigned int pos);
	ZRESULT GetMemory(void **pbuf, unsigned long *plen);
	ZRESULT Close();

	// some variables to do with the file currently being read:
	// I haven't done it object-orientedly here, just put them all
	// together, since OO didn't seem to make the design any clearer.
	ulg attr;
	iztimes times;
	ulg timestamp;  // all open_* methods set these
	bool iseekable;
	long isize, ired;        // size is not set until close() on pips
	ulg crc;                                 // crc is not set until close(). iwrit is cumulative
	HANDLE hfin;
	bool selfclosehf;           // for input files and pipes
	const char *bufin;
	unsigned int lenin, posin; // for memory
	// and a variable for what we've done with the input: (i.e. compressed it!)
	ulg csize;                               // compressed size, set by the compression routines
	// and this is used by some of the compression routines
	char buf[16384];


	ZRESULT open_file(const TCHAR *fn);
	ZRESULT open_handle(HANDLE hf, unsigned int len);
	ZRESULT open_mem(void *src, unsigned int len);
	ZRESULT open_dir();
	static unsigned sread(TState &s, char *buf, unsigned size);
	unsigned read(char *buf, unsigned size);
	ZRESULT iclose();

	ZRESULT ideflate(TZipFileInfo *zfi);
	ZRESULT istore();

	ZRESULT Add(const TCHAR *odstzn, void *src, unsigned int len, DWORD flags);
	ZRESULT AddCentral();

};



ZRESULT TZip::Create(void *z, unsigned int len, DWORD flags)
{
	if (hfout != 0 || hmapout != 0 || obuf != 0 || writ != 0 || oerr != ZR_OK || hasputcen) return ZR_NOTINITED;

	//
	if (flags == ZIP_HANDLE)
	{
		HANDLE hf = (HANDLE)z;
		hfout = hf;
		mustclosehfout = false;
#ifdef DuplicateHandle
		BOOL res = DuplicateHandle(GetCurrentProcess(), hf, GetCurrentProcess(), &hfout, 0, FALSE, DUPLICATE_SAME_ACCESS);

		if (res) mustclosehandle = true;

#endif
		// now we have hfout. Either we duplicated the handle and we close it ourselves
		// (while the caller closes h themselves), or we couldn't duplicate it.
		DWORD res = SetFilePointer(hfout, 0, 0, FILE_CURRENT);
		ocanseek = (res != 0xFFFFFFFF);

		if (ocanseek) ooffset = res;

		else ooffset = 0;

		return ZR_OK;
	}

	else if (flags == ZIP_FILENAME)
	{
		const TCHAR *fn = (const TCHAR *)z;
		hfout = CreateFile(fn, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

		if (hfout == INVALID_HANDLE_VALUE)
		{
			hfout = 0;
			return ZR_NOFILE;
		}

		ocanseek = true;
		ooffset = 0;
		mustclosehfout = true;
		return ZR_OK;
	}

	else if (flags == ZIP_MEMORY)
	{
		unsigned int size = len;

		if (size == 0) return ZR_MEMSIZE;

		if (z != 0) obuf = (char *)z;

		else
		{
			hmapout = CreateFileMapping(INVALID_HANDLE_VALUE, NULL, PAGE_READWRITE, 0, size, NULL);

			if (hmapout == NULL) return ZR_NOALLOC;

			obuf = (char *)MapViewOfFile(hmapout, FILE_MAP_ALL_ACCESS, 0, 0, size);

			if (obuf == 0)
			{
				CloseHandle(hmapout);
				hmapout = 0;
				return ZR_NOALLOC;
			}
		}

		ocanseek = true;
		opos = 0;
		mapsize = size;
		return ZR_OK;
	}

	else return ZR_ARGS;
}

unsigned TZip::sflush(void *param, const char *buf, unsigned *size)
{
	// static
	if (*size == 0) return 0;

	TZip *zip = (TZip *)param;
	unsigned int writ = zip->write(buf, *size);

	if (writ != 0) *size = 0;

	return writ;
}
unsigned TZip::swrite(void *param, const char *buf, unsigned size)
{
	// static
	if (size == 0) return 0;

	TZip *zip = (TZip *)param;
	return zip->write(buf, size);
}
unsigned int TZip::write(const char *buf, unsigned int size)
{
	const char *srcbuf = buf;

	if (encwriting)
	{
		if (encbuf != 0 && encbufsize < size)
		{
			delete[] encbuf;
			encbuf = 0;
		}

		if (encbuf == 0)
		{
			encbuf = new char[size * 2];
			encbufsize = size;
		}

		memcpy(encbuf, buf, size);

		for (unsigned int i = 0; i < size; i++) encbuf[i] = zencode(keys, encbuf[i]);

		srcbuf = encbuf;
	}

	if (obuf != 0)
	{
		if (opos + size >= mapsize)
		{
			oerr = ZR_MEMSIZE;
			return 0;
		}

		memcpy(obuf + opos, srcbuf, size);
		opos += size;
		return size;
	}

	else if (hfout != 0)
	{
		DWORD writ;
		WriteFile(hfout, srcbuf, size, &writ, NULL);
		return writ;
	}

	oerr = ZR_NOTINITED;
	return 0;
}

bool TZip::oseek(unsigned int pos)
{
	if (!ocanseek)
	{
		oerr = ZR_SEEK;
		return false;
	}

	if (obuf != 0)
	{
		if (pos >= mapsize)
		{
			oerr = ZR_MEMSIZE;
			return false;
		}

		opos = pos;
		return true;
	}

	else if (hfout != 0)
	{
		SetFilePointer(hfout, pos + ooffset, NULL, FILE_BEGIN);
		return true;
	}

	oerr = ZR_NOTINITED;
	return 0;
}

ZRESULT TZip::GetMemory(void **pbuf, unsigned long *plen)
{
	// When the user calls GetMemory, they're presumably at the end
	// of all their adding. In any case, we have to add the central
	// directory now, otherwise the memory we tell them won't be complete.
	if (!hasputcen) AddCentral();

	hasputcen = true;

	if (pbuf != NULL) *pbuf = (void *)obuf;

	if (plen != NULL) *plen = writ;

	if (obuf == NULL) return ZR_NOTMMAP;

	return ZR_OK;
}

ZRESULT TZip::Close()
{
	// if the directory hadn't already been added through a call to GetMemory,
	// then we do it now
	ZRESULT res = ZR_OK;

	if (!hasputcen) res = AddCentral();

	hasputcen = true;

	if (obuf != 0 && hmapout != 0) UnmapViewOfFile(obuf);

	obuf = 0;

	if (hmapout != 0) CloseHandle(hmapout);

	hmapout = 0;

	if (hfout != 0 && mustclosehfout) CloseHandle(hfout);

	hfout = 0;
	mustclosehfout = false;
	return res;
}




ZRESULT TZip::open_file(const TCHAR *fn)
{
	hfin = 0;
	bufin = 0;
	selfclosehf = false;
	crc = CRCVAL_INITIAL;
	isize = 0;
	csize = 0;
	ired = 0;

	if (fn == 0) return ZR_ARGS;

	HANDLE hf = CreateFile(fn, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, NULL);

	if (hf == INVALID_HANDLE_VALUE) return ZR_NOFILE;

	ZRESULT res = open_handle(hf, 0);

	if (res != ZR_OK)
	{
		CloseHandle(hf);
		return res;
	}

	selfclosehf = true;
	return ZR_OK;
}
ZRESULT TZip::open_handle(HANDLE hf, unsigned int len)
{
	hfin = 0;
	bufin = 0;
	selfclosehf = false;
	crc = CRCVAL_INITIAL;
	isize = 0;
	csize = 0;
	ired = 0;

	if (hf == 0 || hf == INVALID_HANDLE_VALUE) return ZR_ARGS;

	DWORD res = SetFilePointer(hfout, 0, 0, FILE_CURRENT);

	if (res != 0xFFFFFFFF)
	{
		ZRESULT res = GetFileInfo(hf, &attr, &isize, &times, &timestamp);

		if (res != ZR_OK) return res;

		SetFilePointer(hf, 0, NULL, FILE_BEGIN); // because GetFileInfo will have screwed it up
		iseekable = true;
		hfin = hf;
		return ZR_OK;
	}

	else
	{
		attr = 0x80000000;     // just a normal file
		isize = -1;            // can't know size until at the end

		if (len != 0) isize = len; // unless we were told explicitly!

		iseekable = false;
		SYSTEMTIME st;
		GetLocalTime(&st);
		FILETIME ft;
		SystemTimeToFileTime(&st, &ft);
		WORD dosdate, dostime;
		filetime2dosdatetime(ft, &dosdate, &dostime);
		times.atime = filetime2timet(ft);
		times.mtime = times.atime;
		times.ctime = times.atime;
		timestamp = (WORD)dostime | (((DWORD)dosdate) << 16);
		hfin = hf;
		return ZR_OK;
	}
}
ZRESULT TZip::open_mem(void *src, unsigned int len)
{
	hfin = 0;
	bufin = (const char *)src;
	selfclosehf = false;
	crc = CRCVAL_INITIAL;
	ired = 0;
	csize = 0;
	ired = 0;
	lenin = len;
	posin = 0;

	if (src == 0 || len == 0) return ZR_ARGS;

	attr = 0x80000000; // just a normal file
	isize = len;
	iseekable = true;
	SYSTEMTIME st;
	GetLocalTime(&st);
	FILETIME ft;
	SystemTimeToFileTime(&st, &ft);
	WORD dosdate, dostime;
	filetime2dosdatetime(ft, &dosdate, &dostime);
	times.atime = filetime2timet(ft);
	times.mtime = times.atime;
	times.ctime = times.atime;
	timestamp = (WORD)dostime | (((DWORD)dosdate) << 16);
	return ZR_OK;
}
ZRESULT TZip::open_dir()
{
	hfin = 0;
	bufin = 0;
	selfclosehf = false;
	crc = CRCVAL_INITIAL;
	isize = 0;
	csize = 0;
	ired = 0;
	attr = 0x41C00010; // a readable writable directory, and again directory
	isize = 0;
	iseekable = false;
	SYSTEMTIME st;
	GetLocalTime(&st);
	FILETIME ft;
	SystemTimeToFileTime(&st, &ft);
	WORD dosdate, dostime;
	filetime2dosdatetime(ft, &dosdate, &dostime);
	times.atime = filetime2timet(ft);
	times.mtime = times.atime;
	times.ctime = times.atime;
	timestamp = (WORD)dostime | (((DWORD)dosdate) << 16);
	return ZR_OK;
}

unsigned TZip::sread(TState &s, char *buf, unsigned size)
{
	// static
	TZip *zip = (TZip *)s.param;
	return zip->read(buf, size);
}

unsigned TZip::read(char *buf, unsigned size)
{
	if (bufin != 0)
	{
		if (posin >= lenin) return 0; // end of input

		ulg red = lenin - posin;

		if (red > size) red = size;

		memcpy(buf, bufin + posin, red);
		posin += red;
		ired += red;
		crc = crc32(crc, (uch *)buf, red);
		return red;
	}

	else if (hfin != 0)
	{
		DWORD red;
		BOOL ok = ReadFile(hfin, buf, size, &red, NULL);

		if (!ok) return 0;

		ired += red;
		crc = crc32(crc, (uch *)buf, red);
		return red;
	}

	else
	{
		oerr = ZR_NOTINITED;
		return 0;
	}
}

ZRESULT TZip::iclose()
{
	if (selfclosehf && hfin != 0) CloseHandle(hfin);

	hfin = 0;
	bool mismatch = (isize != -1 && isize != ired);
	isize = ired; // and crc has been being updated anyway

	if (mismatch) return ZR_MISSIZE;

	else return ZR_OK;
}



ZRESULT TZip::ideflate(TZipFileInfo *zfi)
{
	if (state == 0) state = new TState();

	// It's a very big object! 500k! We allocate it on the heap, because PocketPC's
	// stack breaks if we try to put it all on the stack. It will be deleted lazily
	state->err = 0;
	state->readfunc = sread;
	state->flush_outbuf = sflush;
	state->param = this;
	state->level = 8;
	state->seekable = iseekable;
	state->err = NULL;
	// the following line will make ct_init realise it has to perform the init
	state->ts.static_dtree[0].dl.len = 0;
	// Thanks to Alvin77 for this crucial fix:
	state->ds.window_size = 0;
	//  I think that covers everything that needs to be initted.
	//
	bi_init(*state, buf, sizeof(buf), TRUE); // it used to be just 1024-size, not 16384 as here
	ct_init(*state, &zfi->att);
	lm_init(*state, state->level, &zfi->flg);
	ulg sz = deflate(*state);
	csize = sz;
	ZRESULT r = ZR_OK;

	if (state->err != NULL) r = ZR_FLATE;

	return r;
}

ZRESULT TZip::istore()
{
	ulg size = 0;

	for (;;)
	{
		unsigned int cin = read(buf, 16384);

		if (cin <= 0 || cin == (unsigned int)EOF) break;

		unsigned int cout = write(buf, cin);

		if (cout != cin) return ZR_MISSIZE;

		size += cin;
	}

	csize = size;
	return ZR_OK;
}





bool has_seeded = false;
ZRESULT TZip::Add(const TCHAR *odstzn, void *src, unsigned int len, DWORD flags)
{
	if (oerr) return ZR_FAILED;

	if (hasputcen) return ZR_ENDED;

	// if we use password encryption, then every isize and csize is 12 bytes bigger
	int passex = 0;

	if (password != 0 && flags != ZIP_FOLDER) passex = 12;

	// zip has its own notion of what its names should look like: i.e. dir/file.stuff
	TCHAR dstzn[MAX_PATH];
	_tcscpy(dstzn, odstzn);

	if (*dstzn == 0) return ZR_ARGS;

	TCHAR *d = dstzn;

	while (*d != 0)
	{
		if (*d == '\\') *d = '/';

		d++;
	}

	bool isdir = (flags == ZIP_FOLDER);
	bool needs_trailing_slash = (isdir && dstzn[_tcslen(dstzn) - 1] != '/');
	int method = DEFLATE;

	if (isdir || HasZipSuffix(dstzn)) method = STORE;

	// now open whatever was our input source:
	ZRESULT openres;

	if (flags == ZIP_FILENAME) openres = open_file((const TCHAR *)src);

	else if (flags == ZIP_HANDLE) openres = open_handle((HANDLE)src, len);

	else if (flags == ZIP_MEMORY) openres = open_mem(src, len);

	else if (flags == ZIP_FOLDER) openres = open_dir();

	else return ZR_ARGS;

	if (openres != ZR_OK) return openres;

	// A zip "entry" consists of a local header (which includes the file name),
	// then the compressed data, and possibly an extended local header.

	// Initialize the local header
	TZipFileInfo zfi;
	zfi.nxt = NULL;
	strcpy(zfi.name, "");
#ifdef UNICODE
	WideCharToMultiByte(CP_UTF8, 0, dstzn, -1, zfi.iname, MAX_PATH, 0, 0);
#else
	strcpy(zfi.iname, dstzn);
#endif
	zfi.nam = strlen(zfi.iname);

	if (needs_trailing_slash)
	{
		strcat(zfi.iname, "/");
		zfi.nam++;
	}

	strcpy(zfi.zname, "");
	zfi.extra = NULL;
	zfi.ext = 0; // extra header to go after this compressed data, and its length
	zfi.cextra = NULL;
	zfi.cext = 0; // extra header to go in the central end-of-zip directory, and its length
	zfi.comment = NULL;
	zfi.com = 0; // comment, and its length
	zfi.mark = 1;
	zfi.dosflag = 0;
	zfi.att = (ush)BINARY;
	zfi.vem = (ush)0xB17; // 0xB00 is win32 os-code. 0x17 is 23 in decimal: zip 2.3
	zfi.ver = (ush)20;    // Needs PKUNZIP 2.0 to unzip it
	zfi.tim = timestamp;
	// Even though we write the header now, it will have to be rewritten, since we don't know compressed size or crc.
	zfi.crc = 0;            // to be updated later
	zfi.flg = 8;            // 8 means 'there is an extra header'. Assume for the moment that we need it.

	if (password != 0 && !isdir) zfi.flg = 9; // and 1 means 'password-encrypted'

	zfi.lflg = zfi.flg;     // to be updated later
	zfi.how = (ush)method;  // to be updated later
	zfi.siz = (ulg)(method == STORE && isize >= 0 ? isize + passex : 0); // to be updated later
	zfi.len = (ulg)(isize);  // to be updated later
	zfi.dsk = 0;
	zfi.atx = attr;
	zfi.off = writ + ooffset;       // offset within file of the start of this local record
	// stuff the 'times' structure into zfi.extra

	// nb. apparently there's a problem with PocketPC CE(zip)->CE(unzip) fails. And removing the following block fixes it up.
	char xloc[EB_L_UT_SIZE];
	zfi.extra = xloc;
	zfi.ext = EB_L_UT_SIZE;
	char xcen[EB_C_UT_SIZE];
	zfi.cextra = xcen;
	zfi.cext = EB_C_UT_SIZE;
	xloc[0]  = 'U';
	xloc[1]  = 'T';
	xloc[2]  = EB_UT_LEN(3);       // length of data part of e.f.
	xloc[3]  = 0;
	xloc[4]  = EB_UT_FL_MTIME | EB_UT_FL_ATIME | EB_UT_FL_CTIME;
	xloc[5]  = (char)(times.mtime);
	xloc[6]  = (char)(times.mtime >> 8);
	xloc[7]  = (char)(times.mtime >> 16);
	xloc[8]  = (char)(times.mtime >> 24);
	xloc[9]  = (char)(times.atime);
	xloc[10] = (char)(times.atime >> 8);
	xloc[11] = (char)(times.atime >> 16);
	xloc[12] = (char)(times.atime >> 24);
	xloc[13] = (char)(times.ctime);
	xloc[14] = (char)(times.ctime >> 8);
	xloc[15] = (char)(times.ctime >> 16);
	xloc[16] = (char)(times.ctime >> 24);
	memcpy(zfi.cextra, zfi.extra, EB_C_UT_SIZE);
	zfi.cextra[EB_LEN] = EB_UT_LEN(1);


	// (1) Start by writing the local header:
	int r = putlocal(&zfi, swrite, this);

	if (r != ZE_OK)
	{
		iclose();
		return ZR_WRITE;
	}

	writ += 4 + LOCHEAD + (unsigned int)zfi.nam + (unsigned int)zfi.ext;

	if (oerr != ZR_OK)
	{
		iclose();
		return oerr;
	}

	// (1.5) if necessary, write the encryption header
	keys[0] = 305419896L;
	keys[1] = 591751049L;
	keys[2] = 878082192L;

	for (const char *cp = password; cp != 0 && *cp != 0; cp++) update_keys(keys, *cp);

	// generate some random bytes
	if (!has_seeded) srand(GetTickCount() ^ (unsigned long)GetDesktopWindow());

	char encbuf[12];

	for (int i = 0; i < 12; i++) encbuf[i] = (char)((rand() >> 7) & 0xff);

	encbuf[11] = (char)((zfi.tim >> 8) & 0xff);

	for (int ei = 0; ei < 12; ei++) encbuf[ei] = zencode(keys, encbuf[ei]);

	if (password != 0 && !isdir)
	{
		swrite(this, encbuf, 12);
		writ += 12;
	}

	//(2) Write deflated/stored file to zip file
	ZRESULT writeres = ZR_OK;
	encwriting = (password != 0 && !isdir); // an object member variable to say whether we write to disk encrypted

	if (!isdir && method == DEFLATE) writeres = ideflate(&zfi);

	else if (!isdir && method == STORE) writeres = istore();

	else if (isdir) csize = 0;

	encwriting = false;
	iclose();
	writ += csize;

	if (oerr != ZR_OK) return oerr;

	if (writeres != ZR_OK) return ZR_WRITE;

	// (3) Either rewrite the local header with correct information...
	bool first_header_has_size_right = (zfi.siz == csize + passex);
	zfi.crc = crc;
	zfi.siz = csize + passex;
	zfi.len = isize;

	if (ocanseek && (password == 0 || isdir))
	{
		zfi.how = (ush)method;

		if ((zfi.flg & 1) == 0) zfi.flg &= ~8; // clear the extended local header flag

		zfi.lflg = zfi.flg;

		// rewrite the local header:
		if (!oseek(zfi.off - ooffset)) return ZR_SEEK;

		if ((r = putlocal(&zfi, swrite, this)) != ZE_OK) return ZR_WRITE;

		if (!oseek(writ)) return ZR_SEEK;
	}

	else
	{
		// (4) ... or put an updated header at the end
		if (zfi.how != (ush) method) return ZR_NOCHANGE;

		if (method == STORE && !first_header_has_size_right) return ZR_NOCHANGE;

		if ((r = putextended(&zfi, swrite, this)) != ZE_OK) return ZR_WRITE;

		writ += 16L;
		zfi.flg = zfi.lflg; // if flg modified by inflate, for the central index
	}

	if (oerr != ZR_OK) return oerr;

	// Keep a copy of the zipfileinfo, for our end-of-zip directory
	char *cextra = new char[zfi.cext];
	memcpy(cextra, zfi.cextra, zfi.cext);
	zfi.cextra = cextra;
	TZipFileInfo *pzfi = new TZipFileInfo;
	memcpy(pzfi, &zfi, sizeof(zfi));

	if (zfis == NULL) zfis = pzfi;

	else
	{
		TZipFileInfo *z = zfis;

		while (z->nxt != NULL) z = z->nxt;

		z->nxt = pzfi;
	}

	return ZR_OK;
}

ZRESULT TZip::AddCentral()
{
	// write central directory
	int numentries = 0;
	ulg pos_at_start_of_central = writ;
	//ulg tot_unc_size=0, tot_compressed_size=0;
	bool okay = true;

	for (TZipFileInfo *zfi = zfis; zfi != NULL; )
	{
		if (okay)
		{
			int res = putcentral(zfi, swrite, this);

			if (res != ZE_OK) okay = false;
		}

		writ += 4 + CENHEAD + (unsigned int)zfi->nam + (unsigned int)zfi->cext + (unsigned int)zfi->com;
		//tot_unc_size += zfi->len;
		//tot_compressed_size += zfi->siz;
		numentries++;
		//
		TZipFileInfo *zfinext = zfi->nxt;

		if (zfi->cextra != 0) delete[] zfi->cextra;

		delete zfi;
		zfi = zfinext;
	}

	ulg center_size = writ - pos_at_start_of_central;

	if (okay)
	{
		int res = putend(numentries, center_size, pos_at_start_of_central + ooffset, 0, NULL, swrite, this);

		if (res != ZE_OK) okay = false;

		writ += 4 + ENDHEAD + 0;
	}

	if (!okay) return ZR_WRITE;

	return ZR_OK;
}





ZRESULT lasterrorZ = ZR_OK;

unsigned int FormatZipMessageZ(ZRESULT code, char *buf, unsigned int len)
{
	if (code == ZR_RECENT) code = lasterrorZ;

	const char *msg = "unknown zip result code";

	switch (code)
	{
		case ZR_OK:
			msg = "Success";
			break;

		case ZR_NODUPH:
			msg = "Culdn't duplicate handle";
			break;

		case ZR_NOFILE:
			msg = "Couldn't create/open file";
			break;

		case ZR_NOALLOC:
			msg = "Failed to allocate memory";
			break;

		case ZR_WRITE:
			msg = "Error writing to file";
			break;

		case ZR_NOTFOUND:
			msg = "File not found in the zipfile";
			break;

		case ZR_MORE:
			msg = "Still more data to unzip";
			break;

		case ZR_CORRUPT:
			msg = "Zipfile is corrupt or not a zipfile";
			break;

		case ZR_READ:
			msg = "Error reading file";
			break;

		case ZR_ARGS:
			msg = "Caller: faulty arguments";
			break;

		case ZR_PARTIALUNZ:
			msg = "Caller: the file had already been partially unzipped";
			break;

		case ZR_NOTMMAP:
			msg = "Caller: can only get memory of a memory zipfile";
			break;

		case ZR_MEMSIZE:
			msg = "Caller: not enough space allocated for memory zipfile";
			break;

		case ZR_FAILED:
			msg = "Caller: there was a previous error";
			break;

		case ZR_ENDED:
			msg = "Caller: additions to the zip have already been ended";
			break;

		case ZR_ZMODE:
			msg = "Caller: mixing creation and opening of zip";
			break;

		case ZR_NOTINITED:
			msg = "Zip-bug: internal initialisation not completed";
			break;

		case ZR_SEEK:
			msg = "Zip-bug: trying to seek the unseekable";
			break;

		case ZR_MISSIZE:
			msg = "Zip-bug: the anticipated size turned out wrong";
			break;

		case ZR_NOCHANGE:
			msg = "Zip-bug: tried to change mind, but not allowed";
			break;

		case ZR_FLATE:
			msg = "Zip-bug: an internal error during flation";
			break;
	}

	unsigned int mlen = (unsigned int)strlen(msg);

	if (buf == 0 || len == 0) return mlen;

	unsigned int n = mlen;

	if (n + 1 > len) n = len - 1;

	strncpy(buf, msg, n);
	buf[n] = 0;
	return mlen;
}

typedef struct
{
	DWORD flag;
	TZip *zip;
} TZipHandleData;

HZIP CreateZipInternal(void *z, unsigned int len, DWORD flags, const char *password)
{
	TZip *zip = new TZip(password);
	lasterrorZ = zip->Create(z, len, flags);

	if (lasterrorZ != ZR_OK)
	{
		delete zip;
		return 0;
	}

	TZipHandleData *han = new TZipHandleData;
	han->flag = 2;
	han->zip = zip;
	return (HZIP)han;
}

HZIP CreateZipHandle(HANDLE h, const char *password)
{
	return CreateZipInternal(h, 0, ZIP_HANDLE, password);
}

HZIP CreateZip(const TCHAR *fn, const char *password)
{
	return CreateZipInternal((void *)fn, 0, ZIP_FILENAME, password);
}

HZIP CreateZip(void *z, unsigned int len, const char *password)
{
	return CreateZipInternal(z, len, ZIP_MEMORY, password);
}


ZRESULT ZipAddInternal(HZIP hz, const TCHAR *dstzn, void *src, unsigned int len, DWORD flags)
{
	if (hz == 0)
	{
		lasterrorZ = ZR_ARGS;
		return ZR_ARGS;
	}

	TZipHandleData *han = (TZipHandleData *)hz;

	if (han->flag != 2)
	{
		lasterrorZ = ZR_ZMODE;
		return ZR_ZMODE;
	}

	TZip *zip = han->zip;
	lasterrorZ = zip->Add(dstzn, src, len, flags);
	return lasterrorZ;
}

ZRESULT ZipAdd(HZIP hz, const TCHAR *dstzn, const TCHAR *fn)
{
	return ZipAddInternal(hz, dstzn, (void *)fn, 0, ZIP_FILENAME);
}

ZRESULT ZipAdd(HZIP hz, const TCHAR *dstzn, void *src, unsigned int len)
{
	return ZipAddInternal(hz, dstzn, src, len, ZIP_MEMORY);
}

ZRESULT ZipAddHandle(HZIP hz, const TCHAR *dstzn, HANDLE h)
{
	return ZipAddInternal(hz, dstzn, h, 0, ZIP_HANDLE);
}

ZRESULT ZipAddHandle(HZIP hz, const TCHAR *dstzn, HANDLE h, unsigned int len)
{
	return ZipAddInternal(hz, dstzn, h, len, ZIP_HANDLE);
}

ZRESULT ZipAddFolder(HZIP hz, const TCHAR *dstzn)
{
	return ZipAddInternal(hz, dstzn, 0, 0, ZIP_FOLDER);
}

ZRESULT ZipGetMemory(HZIP hz, void **buf, unsigned long *len)
{
	if (hz == 0)
	{
		if (buf != 0) *buf = 0;

		if (len != 0) *len = 0;

		lasterrorZ = ZR_ARGS;
		return ZR_ARGS;
	}

	TZipHandleData *han = (TZipHandleData *)hz;

	if (han->flag != 2)
	{
		lasterrorZ = ZR_ZMODE;
		return ZR_ZMODE;
	}

	TZip *zip = han->zip;
	lasterrorZ = zip->GetMemory(buf, len);
	return lasterrorZ;
}

ZRESULT CloseZipZ(HZIP hz)
{
	if (hz == 0)
	{
		lasterrorZ = ZR_ARGS;
		return ZR_ARGS;
	}

	TZipHandleData *han = (TZipHandleData *)hz;

	if (han->flag != 2)
	{
		lasterrorZ = ZR_ZMODE;
		return ZR_ZMODE;
	}

	TZip *zip = han->zip;
	lasterrorZ = zip->Close();
	delete zip;
	delete han;
	return lasterrorZ;
}

bool IsZipHandleZ(HZIP hz)
{
	if (hz == 0) return false;

	TZipHandleData *han = (TZipHandleData *)hz;
	return (han->flag == 2);
}

ZIP解压头文件

#ifndef _unzip_H
#define _unzip_H

// UNZIPPING functions -- for unzipping.
// This file is a repackaged form of extracts from the zlib code available
// at www.gzip.org/zlib, by Jean-Loup Gailly and Mark Adler. The original
// copyright notice may be found in unzip.cpp. The repackaging was done
// by Lucian Wischik to simplify and extend its use in Windows/C++. Also
// encryption and unicode filenames have been added.


#ifndef _zip_H
DECLARE_HANDLE(HZIP);
#endif
// An HZIP identifies a zip file that has been opened

typedef DWORD ZRESULT;
// return codes from any of the zip functions. Listed later.

typedef struct
{
	int index;                 // index of this file within the zip
	TCHAR name[MAX_PATH];      // filename within the zip
	DWORD attr;                // attributes, as in GetFileAttributes.
	FILETIME atime, ctime, mtime; // access, create, modify filetimes
	long comp_size;            // sizes of item, compressed and uncompressed. These
	long unc_size;             // may be -1 if not yet known (e.g. being streamed in)
} ZIPENTRY;


HZIP OpenZip(const TCHAR *fn, const char *password);
HZIP OpenZip(void *z, unsigned int len, const char *password);
HZIP OpenZipHandle(HANDLE h, const char *password);
// OpenZip - opens a zip file and returns a handle with which you can
// subsequently examine its contents. You can open a zip file from:
// from a pipe:             OpenZipHandle(hpipe_read,0);
// from a file (by handle): OpenZipHandle(hfile,0);
// from a file (by name):   OpenZip("c:\\test.zip","password");
// from a memory block:     OpenZip(bufstart, buflen,0);
// If the file is opened through a pipe, then items may only be
// accessed in increasing order, and an item may only be unzipped once,
// although GetZipItem can be called immediately before and after unzipping
// it. If it's opened in any other way, then full random access is possible.
// Note: pipe input is not yet implemented.
// Note: zip passwords are ascii, not unicode.
// Note: for windows-ce, you cannot close the handle until after CloseZip.
// but for real windows, the zip makes its own copy of your handle, so you
// can close yours anytime.

ZRESULT GetZipItem(HZIP hz, int index, ZIPENTRY *ze);
// GetZipItem - call this to get information about an item in the zip.
// If index is -1 and the file wasn't opened through a pipe,
// then it returns information about the whole zipfile
// (and in particular ze.index returns the number of index items).
// Note: the item might be a directory (ze.attr & FILE_ATTRIBUTE_DIRECTORY)
// See below for notes on what happens when you unzip such an item.
// Note: if you are opening the zip through a pipe, then random access
// is not possible and GetZipItem(-1) fails and you can't discover the number
// of items except by calling GetZipItem on each one of them in turn,
// starting at 0, until eventually the call fails. Also, in the event that
// you are opening through a pipe and the zip was itself created into a pipe,
// then then comp_size and sometimes unc_size as well may not be known until
// after the item has been unzipped.

ZRESULT FindZipItem(HZIP hz, const TCHAR *name, bool ic, int *index, ZIPENTRY *ze);
// FindZipItem - finds an item by name. ic means 'insensitive to case'.
// It returns the index of the item, and returns information about it.
// If nothing was found, then index is set to -1 and the function returns
// an error code.

ZRESULT UnzipItem(HZIP hz, int index, const TCHAR *fn);
ZRESULT UnzipItem(HZIP hz, int index, void *z, unsigned int len);
ZRESULT UnzipItemHandle(HZIP hz, int index, HANDLE h);
// UnzipItem - given an index to an item, unzips it. You can unzip to:
// to a pipe:             UnzipItemHandle(hz,i, hpipe_write);
// to a file (by handle): UnzipItemHandle(hz,i, hfile);
// to a file (by name):   UnzipItem(hz,i, ze.name);
// to a memory block:     UnzipItem(hz,i, buf,buflen);
// In the final case, if the buffer isn't large enough to hold it all,
// then the return code indicates that more is yet to come. If it was
// large enough, and you want to know precisely how big, GetZipItem.
// Note: zip files are normally stored with relative pathnames. If you
// unzip with ZIP_FILENAME a relative pathname then the item gets created
// relative to the current directory - it first ensures that all necessary
// subdirectories have been created. Also, the item may itself be a directory.
// If you unzip a directory with ZIP_FILENAME, then the directory gets created.
// If you unzip it to a handle or a memory block, then nothing gets created
// and it emits 0 bytes.
ZRESULT SetUnzipBaseDir(HZIP hz, const TCHAR *dir);
// if unzipping to a filename, and it's a relative filename, then it will be relative to here.
// (defaults to current-directory).


ZRESULT CloseZip(HZIP hz);
// CloseZip - the zip handle must be closed with this function.

unsigned int FormatZipMessage(ZRESULT code, TCHAR *buf, unsigned int len);
// FormatZipMessage - given an error code, formats it as a string.
// It returns the length of the error message. If buf/len points
// to a real buffer, then it also writes as much as possible into there.


// These are the result codes:
#define ZR_OK         0x00000000     // nb. the pseudo-code zr-recent is never returned,
#define ZR_RECENT     0x00000001     // but can be passed to FormatZipMessage.
// The following come from general system stuff (e.g. files not openable)
#define ZR_GENMASK    0x0000FF00
#define ZR_NODUPH     0x00000100     // couldn't duplicate the handle
#define ZR_NOFILE     0x00000200     // couldn't create/open the file
#define ZR_NOALLOC    0x00000300     // failed to allocate some resource
#define ZR_WRITE      0x00000400     // a general error writing to the file
#define ZR_NOTFOUND   0x00000500     // couldn't find that file in the zip
#define ZR_MORE       0x00000600     // there's still more data to be unzipped
#define ZR_CORRUPT    0x00000700     // the zipfile is corrupt or not a zipfile
#define ZR_READ       0x00000800     // a general error reading the file
#define ZR_PASSWORD   0x00001000     // we didn't get the right password to unzip the file
// The following come from mistakes on the part of the caller
#define ZR_CALLERMASK 0x00FF0000
#define ZR_ARGS       0x00010000     // general mistake with the arguments
#define ZR_NOTMMAP    0x00020000     // tried to ZipGetMemory, but that only works on mmap zipfiles, which yours wasn't
#define ZR_MEMSIZE    0x00030000     // the memory size is too small
#define ZR_FAILED     0x00040000     // the thing was already failed when you called this function
#define ZR_ENDED      0x00050000     // the zip creation has already been closed
#define ZR_MISSIZE    0x00060000     // the indicated input file size turned out mistaken
#define ZR_PARTIALUNZ 0x00070000     // the file had already been partially unzipped
#define ZR_ZMODE      0x00080000     // tried to mix creating/opening a zip 
// The following come from bugs within the zip library itself
#define ZR_BUGMASK    0xFF000000
#define ZR_NOTINITED  0x01000000     // initialisation didn't work
#define ZR_SEEK       0x02000000     // trying to seek in an unseekable file
#define ZR_NOCHANGE   0x04000000     // changed its mind on storage, but not allowed
#define ZR_FLATE      0x05000000     // an internal error in the de/inflation code





// e.g.
//
// SetCurrentDirectory("c:\\docs\\stuff");
// HZIP hz = OpenZip("c:\\stuff.zip",0);
// ZIPENTRY ze; GetZipItem(hz,-1,&ze); int numitems=ze.index;
// for (int i=0; i<numitems; i++)
// { GetZipItem(hz,i,&ze);
//   UnzipItem(hz,i,ze.name);
// }
// CloseZip(hz);
//
//
// HRSRC hrsrc = FindResource(hInstance,MAKEINTRESOURCE(1),RT_RCDATA);
// HANDLE hglob = LoadResource(hInstance,hrsrc);
// void *zipbuf=LockResource(hglob);
// unsigned int ziplen=SizeofResource(hInstance,hrsrc);
// HZIP hz = OpenZip(zipbuf, ziplen, 0);
//   - unzip to a membuffer -
// ZIPENTRY ze; int i; FindZipItem(hz,"file.dat",true,&i,&ze);
// char *ibuf = new char[ze.unc_size];
// UnzipItem(hz,i, ibuf, ze.unc_size);
// delete[] ibuf;
//   - unzip to a fixed membuff -
// ZIPENTRY ze; int i; FindZipItem(hz,"file.dat",true,&i,&ze);
// char ibuf[1024]; ZRESULT zr=ZR_MORE; unsigned long totsize=0;
// while (zr==ZR_MORE)
// { zr = UnzipItem(hz,i, ibuf,1024);
//   unsigned long bufsize=1024; if (zr==ZR_OK) bufsize=ze.unc_size-totsize;
//   totsize+=bufsize;
// }
//   - unzip to a pipe -
// HANDLE hwrite; HANDLE hthread=CreateWavReaderThread(&hwrite);
// int i; ZIPENTRY ze; FindZipItem(hz,"sound.wav",true,&i,&ze);
// UnzipItemHandle(hz,i, hwrite);
// CloseHandle(hwrite);
// WaitForSingleObject(hthread,INFINITE);
// CloseHandle(hwrite); CloseHandle(hthread);
//   - finished -
// CloseZip(hz);
// // note: no need to free resources obtained through Find/Load/LockResource
//
//
// SetCurrentDirectory("c:\\docs\\pipedzipstuff");
// HANDLE hread,hwrite; CreatePipe(&hread,&hwrite,0,0);
// CreateZipWriterThread(hwrite);
// HZIP hz = OpenZipHandle(hread,0);
// for (int i=0; ; i++)
// { ZIPENTRY ze;
//   ZRESULT zr=GetZipItem(hz,i,&ze); if (zr!=ZR_OK) break; // no more
//   UnzipItem(hz,i, ze.name);
// }
// CloseZip(hz);
//
//




// Now we indulge in a little skullduggery so that the code works whether
// the user has included just zip or both zip and unzip.
// Idea: if header files for both zip and unzip are present, then presumably
// the cpp files for zip and unzip are both present, so we will call
// one or the other of them based on a dynamic choice. If the header file
// for only one is present, then we will bind to that particular one.
ZRESULT CloseZipU(HZIP hz);
unsigned int FormatZipMessageU(ZRESULT code, TCHAR *buf, unsigned int len);
bool IsZipHandleU(HZIP hz);
#ifdef _zip_H
#undef CloseZip
#define CloseZip(hz) (IsZipHandleU(hz)?CloseZipU(hz):CloseZipZ(hz))
#else
#define CloseZip CloseZipU
#define FormatZipMessage FormatZipMessageU
#endif



#endif // _unzip_H

ZIP解压源文件

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <tchar.h>
#include "unzip.h"

// THIS FILE is almost entirely based upon code by Jean-loup Gailly
// and Mark Adler. It has been modified by Lucian Wischik.
// The modifications were: incorporate the bugfixes of 1.1.4, allow
// unzipping to/from handles/pipes/files/memory, encryption, unicode,
// a windowsish api, and putting everything into a single .cpp file.
// The original code may be found at http://www.gzip.org/zlib/
// The original copyright text follows.
//
//
//
// zlib.h -- interface of the 'zlib' general purpose compression library
//  version 1.1.3, July 9th, 1998
//
//  Copyright (C) 1995-1998 Jean-loup Gailly and Mark Adler
//
//  This software is provided 'as-is', without any express or implied
//  warranty.  In no event will the authors be held liable for any damages
//  arising from the use of this software.
//
//  Permission is granted to anyone to use this software for any purpose,
//  including commercial applications, and to alter it and redistribute it
//  freely, subject to the following restrictions:
//
//  1. The origin of this software must not be misrepresented; you must not
//     claim that you wrote the original software. If you use this software
//     in a product, an acknowledgment in the product documentation would be
//     appreciated but is not required.
//  2. Altered source versions must be plainly marked as such, and must not be
//     misrepresented as being the original software.
//  3. This notice may not be removed or altered from any source distribution.
//
//  Jean-loup Gailly        Mark Adler
//  jloup@gzip.org          madler@alumni.caltech.edu
//
//
//  The data format used by the zlib library is described by RFCs (Request for
//  Comments) 1950 to 1952 in the files ftp://ds.internic.net/rfc/rfc1950.txt
//  (zlib format), rfc1951.txt (deflate format) and rfc1952.txt (gzip format).
//
//
//     The 'zlib' compression library provides in-memory compression and
//  decompression functions, including integrity checks of the uncompressed
//  data.  This version of the library supports only one compression method
//  (deflation) but other algorithms will be added later and will have the same
//  stream interface.
//
//     Compression can be done in a single step if the buffers are large
//  enough (for example if an input file is mmap'ed), or can be done by
//  repeated calls of the compression function.  In the latter case, the
//  application must provide more input and/or consume the output
//  (providing more output space) before each call.
//
//     The library also supports reading and writing files in gzip (.gz) format
//  with an interface similar to that of stdio.
//
//     The library does not install any signal handler. The decoder checks
//  the consistency of the compressed data, so the library should never
//  crash even in case of corrupted input.
//
// for more info about .ZIP format, see ftp://ftp.cdrom.com/pub/infozip/doc/appnote-970311-iz.zip
//   PkWare has also a specification at ftp://ftp.pkware.com/probdesc.zip

#define ZIP_HANDLE   1
#define ZIP_FILENAME 2
#define ZIP_MEMORY   3


#define zmalloc(len) malloc(len)

#define zfree(p) free(p)

/*
void *zmalloc(unsigned int len)
{ char *buf = new char[len+32];
  for (int i=0; i<16; i++)
  { buf[i]=i;
    buf[len+31-i]=i;
  }
  *((unsigned int*)buf) = len;
  char c[1000]; wsprintf(c,"malloc 0x%lx  - %lu",buf+16,len);
  OutputDebugString(c);
  return buf+16;
}

void zfree(void *buf)
{ char c[1000]; wsprintf(c,"free   0x%lx",buf);
  OutputDebugString(c);
  char *p = ((char*)buf)-16;
  unsigned int len = *((unsigned int*)p);
  bool blown=false;
  for (int i=0; i<16; i++)
  { char lo = p[i];
    char hi = p[len+31-i];
    if (hi!=i || (lo!=i && i>4)) blown=true;
  }
  if (blown)
  { OutputDebugString("BLOWN!!!");
  }
  delete[] p;
}
*/


typedef struct tm_unz_s
{
	unsigned int tm_sec;            // seconds after the minute - [0,59]
	unsigned int tm_min;            // minutes after the hour - [0,59]
	unsigned int tm_hour;           // hours since midnight - [0,23]
	unsigned int tm_mday;           // day of the month - [1,31]
	unsigned int tm_mon;            // months since January - [0,11]
	unsigned int tm_year;           // years - [1980..2044]
} tm_unz;


// unz_global_info structure contain global data about the ZIPfile
typedef struct unz_global_info_s
{
	unsigned long number_entry;         // total number of entries in the central dir on this disk
	unsigned long size_comment;         // size of the global comment of the zipfile
} unz_global_info;

// unz_file_info contain information about a file in the zipfile
typedef struct unz_file_info_s
{
	unsigned long version;              // version made by                 2 bytes
	unsigned long version_needed;       // version needed to extract       2 bytes
	unsigned long flag;                 // general purpose bit flag        2 bytes
	unsigned long compression_method;   // compression method              2 bytes
	unsigned long dosDate;              // last mod file date in Dos fmt   4 bytes
	unsigned long crc;                  // crc-32                          4 bytes
	unsigned long compressed_size;      // compressed size                 4 bytes
	unsigned long uncompressed_size;    // uncompressed size               4 bytes
	unsigned long size_filename;        // filename length                 2 bytes
	unsigned long size_file_extra;      // extra field length              2 bytes
	unsigned long size_file_comment;    // file comment length             2 bytes
	unsigned long disk_num_start;       // disk number start               2 bytes
	unsigned long internal_fa;          // internal file attributes        2 bytes
	unsigned long external_fa;          // external file attributes        4 bytes
	tm_unz tmu_date;
} unz_file_info;


#define UNZ_OK                  (0)
#define UNZ_END_OF_LIST_OF_FILE (-100)
#define UNZ_ERRNO               (Z_ERRNO)
#define UNZ_EOF                 (0)
#define UNZ_PARAMERROR          (-102)
#define UNZ_BADZIPFILE          (-103)
#define UNZ_INTERNALERROR       (-104)
#define UNZ_CRCERROR            (-105)
#define UNZ_PASSWORD            (-106)







#define ZLIB_VERSION "1.1.3"


// Allowed flush values; see deflate() for details
#define Z_NO_FLUSH      0
#define Z_SYNC_FLUSH    2
#define Z_FULL_FLUSH    3
#define Z_FINISH        4


// compression levels
#define Z_NO_COMPRESSION         0
#define Z_BEST_SPEED             1
#define Z_BEST_COMPRESSION       9
#define Z_DEFAULT_COMPRESSION  (-1)

// compression strategy; see deflateInit2() for details
#define Z_FILTERED            1
#define Z_HUFFMAN_ONLY        2
#define Z_DEFAULT_STRATEGY    0

// Possible values of the data_type field
#define Z_BINARY   0
#define Z_ASCII    1
#define Z_UNKNOWN  2

// The deflate compression method (the only one supported in this version)
#define Z_DEFLATED   8

// for initializing zalloc, zfree, opaque
#define Z_NULL  0

// case sensitivity when searching for filenames
#define CASE_SENSITIVE 1
#define CASE_INSENSITIVE 2


// Return codes for the compression/decompression functions. Negative
// values are errors, positive values are used for special but normal events.
#define Z_OK            0
#define Z_STREAM_END    1
#define Z_NEED_DICT     2
#define Z_ERRNO        (-1)
#define Z_STREAM_ERROR (-2)
#define Z_DATA_ERROR   (-3)
#define Z_MEM_ERROR    (-4)
#define Z_BUF_ERROR    (-5)
#define Z_VERSION_ERROR (-6)



// Basic data types
typedef unsigned char  Byte;  // 8 bits
typedef unsigned int   uInt;  // 16 bits or more
typedef unsigned long  uLong; // 32 bits or more
typedef void *voidpf;
typedef void     *voidp;
typedef long z_off_t;












typedef voidpf (*alloc_func) (voidpf opaque, uInt items, uInt size);
typedef void   (*free_func)  (voidpf opaque, voidpf address);

struct internal_state;

typedef struct z_stream_s
{
	Byte    *next_in;  // next input byte
	uInt     avail_in;  // number of bytes available at next_in
	uLong    total_in;  // total nb of input bytes read so far

	Byte    *next_out; // next output byte should be put there
	uInt     avail_out; // remaining free space at next_out
	uLong    total_out; // total nb of bytes output so far

	char     *msg;      // last error message, NULL if no error
	struct internal_state *state; // not visible by applications

	alloc_func zalloc;  // used to allocate the internal state
	free_func  zfree;   // used to free the internal state
	voidpf     opaque;  // private data object passed to zalloc and zfree

	int     data_type;  // best guess about the data type: ascii or binary
	uLong   adler;      // adler32 value of the uncompressed data
	uLong   reserved;   // reserved for future use
} z_stream;

typedef z_stream *z_streamp;


//   The application must update next_in and avail_in when avail_in has
//   dropped to zero. It must update next_out and avail_out when avail_out
//   has dropped to zero. The application must initialize zalloc, zfree and
//   opaque before calling the init function. All other fields are set by the
//   compression library and must not be updated by the application.
//
//   The opaque value provided by the application will be passed as the first
//   parameter for calls of zalloc and zfree. This can be useful for custom
//   memory management. The compression library attaches no meaning to the
//   opaque value.
//
//   zalloc must return Z_NULL if there is not enough memory for the object.
//   If zlib is used in a multi-threaded application, zalloc and zfree must be
//   thread safe.
//
//   The fields total_in and total_out can be used for statistics or
//   progress reports. After compression, total_in holds the total size of
//   the uncompressed data and may be saved for use in the decompressor
//   (particularly if the decompressor wants to decompress everything in
//   a single step).
//


// basic functions

const char *zlibVersion ();
// The application can compare zlibVersion and ZLIB_VERSION for consistency.
// If the first character differs, the library code actually used is
// not compatible with the zlib.h header file used by the application.
// This check is automatically made by inflateInit.






int inflate (z_streamp strm, int flush);
//
//    inflate decompresses as much data as possible, and stops when the input
//  buffer becomes empty or the output buffer becomes full. It may some
//  introduce some output latency (reading input without producing any output)
//  except when forced to flush.
//
//  The detailed semantics are as follows. inflate performs one or both of the
//  following actions:
//
//  - Decompress more input starting at next_in and update next_in and avail_in
//    accordingly. If not all input can be processed (because there is not
//    enough room in the output buffer), next_in is updated and processing
//    will resume at this point for the next call of inflate().
//
//  - Provide more output starting at next_out and update next_out and avail_out
//    accordingly.  inflate() provides as much output as possible, until there
//    is no more input data or no more space in the output buffer (see below
//    about the flush parameter).
//
//  Before the call of inflate(), the application should ensure that at least
//  one of the actions is possible, by providing more input and/or consuming
//  more output, and updating the next_* and avail_* values accordingly.
//  The application can consume the uncompressed output when it wants, for
//  example when the output buffer is full (avail_out == 0), or after each
//  call of inflate(). If inflate returns Z_OK and with zero avail_out, it
//  must be called again after making room in the output buffer because there
//  might be more output pending.
//
//    If the parameter flush is set to Z_SYNC_FLUSH, inflate flushes as much
//  output as possible to the output buffer. The flushing behavior of inflate is
//  not specified for values of the flush parameter other than Z_SYNC_FLUSH
//  and Z_FINISH, but the current implementation actually flushes as much output
//  as possible anyway.
//
//    inflate() should normally be called until it returns Z_STREAM_END or an
//  error. However if all decompression is to be performed in a single step
//  (a single call of inflate), the parameter flush should be set to
//  Z_FINISH. In this case all pending input is processed and all pending
//  output is flushed; avail_out must be large enough to hold all the
//  uncompressed data. (The size of the uncompressed data may have been saved
//  by the compressor for this purpose.) The next operation on this stream must
//  be inflateEnd to deallocate the decompression state. The use of Z_FINISH
//  is never required, but can be used to inform inflate that a faster routine
//  may be used for the single inflate() call.
//
//     If a preset dictionary is needed at this point (see inflateSetDictionary
//  below), inflate sets strm-adler to the adler32 checksum of the
//  dictionary chosen by the compressor and returns Z_NEED_DICT; otherwise
//  it sets strm->adler to the adler32 checksum of all output produced
//  so far (that is, total_out bytes) and returns Z_OK, Z_STREAM_END or
//  an error code as described below. At the end of the stream, inflate()
//  checks that its computed adler32 checksum is equal to that saved by the
//  compressor and returns Z_STREAM_END only if the checksum is correct.
//
//    inflate() returns Z_OK if some progress has been made (more input processed
//  or more output produced), Z_STREAM_END if the end of the compressed data has
//  been reached and all uncompressed output has been produced, Z_NEED_DICT if a
//  preset dictionary is needed at this point, Z_DATA_ERROR if the input data was
//  corrupted (input stream not conforming to the zlib format or incorrect
//  adler32 checksum), Z_STREAM_ERROR if the stream structure was inconsistent
//  (for example if next_in or next_out was NULL), Z_MEM_ERROR if there was not
//  enough memory, Z_BUF_ERROR if no progress is possible or if there was not
//  enough room in the output buffer when Z_FINISH is used. In the Z_DATA_ERROR
//  case, the application may then call inflateSync to look for a good
//  compression block.
//


int inflateEnd (z_streamp strm);
//
//     All dynamically allocated data structures for this stream are freed.
//   This function discards any unprocessed input and does not flush any
//   pending output.
//
//     inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state
//   was inconsistent. In the error case, msg may be set but then points to a
//   static string (which must not be deallocated).

// Advanced functions

//  The following functions are needed only in some special applications.





int inflateSetDictionary (z_streamp strm,
    const Byte *dictionary,
    uInt  dictLength);
//
//     Initializes the decompression dictionary from the given uncompressed byte
//   sequence. This function must be called immediately after a call of inflate
//   if this call returned Z_NEED_DICT. The dictionary chosen by the compressor
//   can be determined from the Adler32 value returned by this call of
//   inflate. The compressor and decompressor must use exactly the same
//   dictionary.
//
//     inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a
//   parameter is invalid (such as NULL dictionary) or the stream state is
//   inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the
//   expected one (incorrect Adler32 value). inflateSetDictionary does not
//   perform any decompression: this will be done by subsequent calls of
//   inflate().


int inflateSync (z_streamp strm);
//
//    Skips invalid compressed data until a full flush point can be found, or until all
//  available input is skipped. No output is provided.
//
//    inflateSync returns Z_OK if a full flush point has been found, Z_BUF_ERROR
//  if no more input was provided, Z_DATA_ERROR if no flush point has been found,
//  or Z_STREAM_ERROR if the stream structure was inconsistent. In the success
//  case, the application may save the current current value of total_in which
//  indicates where valid compressed data was found. In the error case, the
//  application may repeatedly call inflateSync, providing more input each time,
//  until success or end of the input data.


int inflateReset (z_streamp strm);
//     This function is equivalent to inflateEnd followed by inflateInit,
//   but does not free and reallocate all the internal decompression state.
//   The stream will keep attributes that may have been set by inflateInit2.
//
//      inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
//   stream state was inconsistent (such as zalloc or state being NULL).
//



// checksum functions
// These functions are not related to compression but are exported
// anyway because they might be useful in applications using the
// compression library.

uLong adler32 (uLong adler, const Byte *buf, uInt len);
//     Update a running Adler-32 checksum with the bytes buf[0..len-1] and
//   return the updated checksum. If buf is NULL, this function returns
//   the required initial value for the checksum.
//   An Adler-32 checksum is almost as reliable as a CRC32 but can be computed
//   much faster. Usage example:
//
//     uLong adler = adler32(0L, Z_NULL, 0);
//
//     while (read_buffer(buffer, length) != EOF) {
//       adler = adler32(adler, buffer, length);
//     }
//     if (adler != original_adler) error();

uLong ucrc32   (uLong crc, const Byte *buf, uInt len);
//     Update a running crc with the bytes buf[0..len-1] and return the updated
//   crc. If buf is NULL, this function returns the required initial value
//   for the crc. Pre- and post-conditioning (one's complement) is performed
//   within this function so it shouldn't be done by the application.
//   Usage example:
//
//     uLong crc = crc32(0L, Z_NULL, 0);
//
//     while (read_buffer(buffer, length) != EOF) {
//       crc = crc32(crc, buffer, length);
//     }
//     if (crc != original_crc) error();




const char   *zError           (int err);
int           inflateSyncPoint (z_streamp z);
const uLong *get_crc_table    (void);



typedef unsigned char  uch;
typedef uch uchf;
typedef unsigned short ush;
typedef ush ushf;
typedef unsigned long  ulg;



const char *const z_errmsg[10] =    // indexed by 2-zlib_error
{
	"need dictionary",     // Z_NEED_DICT       2
	"stream end",          // Z_STREAM_END      1
	"",                    // Z_OK              0
	"file error",          // Z_ERRNO         (-1)
	"stream error",        // Z_STREAM_ERROR  (-2)
	"data error",          // Z_DATA_ERROR    (-3)
	"insufficient memory", // Z_MEM_ERROR     (-4)
	"buffer error",        // Z_BUF_ERROR     (-5)
	"incompatible version",// Z_VERSION_ERROR (-6)
	""
};


#define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]

#define ERR_RETURN(strm,err) \
  return (strm->msg = (char*)ERR_MSG(err), (err))
// To be used only when the state is known to be valid

// common constants


#define STORED_BLOCK 0
#define STATIC_TREES 1
#define DYN_TREES    2
// The three kinds of block type

#define MIN_MATCH  3
#define MAX_MATCH  258
// The minimum and maximum match lengths

#define PRESET_DICT 0x20 // preset dictionary flag in zlib header 

// target dependencies

#define OS_CODE  0x0b  // Window 95 & Windows NT



// functions

#define zmemzero(dest, len) memset(dest, 0, len)

// Diagnostic functions
#define LuAssert(cond,msg)
#define LuTrace(x)
#define LuTracev(x)
#define LuTracevv(x)
#define LuTracec(c,x)
#define LuTracecv(c,x)


typedef uLong (*check_func) (uLong check, const Byte *buf, uInt len);
voidpf zcalloc (voidpf opaque, unsigned items, unsigned size);
void   zcfree  (voidpf opaque, voidpf ptr);

#define ZALLOC(strm, items, size) \
           (*((strm)->zalloc))((strm)->opaque, (items), (size))
#define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))

//void ZFREE(z_streamp strm,voidpf addr)
//{ *((strm)->zfree))((strm)->opaque, addr);
//}

#define TRY_FREE(s, p) {if (p) ZFREE(s, p);}




// Huffman code lookup table entry--this entry is four bytes for machines
// that have 16-bit pointers (e.g. PC's in the small or medium model).


typedef struct inflate_huft_s inflate_huft;

struct inflate_huft_s
{
	union
	{
		struct
		{
			Byte Exop;        // number of extra bits or operation
			Byte Bits;        // number of bits in this code or subcode
		} what;
		uInt pad;           // pad structure to a power of 2 (4 bytes for
	} word;               //  16-bit, 8 bytes for 32-bit int's)
	uInt base;            // literal, length base, distance base, or table offset
};

// Maximum size of dynamic tree.  The maximum found in a long but non-
//   exhaustive search was 1004 huft structures (850 for length/literals
//   and 154 for distances, the latter actually the result of an
//   exhaustive search).  The actual maximum is not known, but the
//   value below is more than safe.
#define MANY 1440

int inflate_trees_bits (
    uInt *,                    // 19 code lengths
    uInt *,                    // bits tree desired/actual depth
    inflate_huft * *,       // bits tree result
    inflate_huft *,             // space for trees
    z_streamp);                // for messages

int inflate_trees_dynamic (
    uInt,                       // number of literal/length codes
    uInt,                       // number of distance codes
    uInt *,                    // that many (total) code lengths
    uInt *,                    // literal desired/actual bit depth
    uInt *,                    // distance desired/actual bit depth
    inflate_huft * *,       // literal/length tree result
    inflate_huft * *,       // distance tree result
    inflate_huft *,             // space for trees
    z_streamp);                // for messages

int inflate_trees_fixed (
    uInt *,                    // literal desired/actual bit depth
    uInt *,                    // distance desired/actual bit depth
    const inflate_huft * *,       // literal/length tree result
    const inflate_huft * *,       // distance tree result
    z_streamp);                // for memory allocation





struct inflate_blocks_state;
typedef struct inflate_blocks_state inflate_blocks_statef;

inflate_blocks_statef *inflate_blocks_new (
    z_streamp z,
    check_func c,               // check function
    uInt w);                   // window size

int inflate_blocks (
    inflate_blocks_statef *,
    z_streamp,
    int);                      // initial return code

void inflate_blocks_reset (
    inflate_blocks_statef *,
    z_streamp,
    uLong *);                  // check value on output

int inflate_blocks_free (
    inflate_blocks_statef *,
    z_streamp);

void inflate_set_dictionary (
    inflate_blocks_statef *s,
    const Byte *d,  // dictionary
    uInt  n);       // dictionary length

int inflate_blocks_sync_point (
    inflate_blocks_statef *s);




struct inflate_codes_state;
typedef struct inflate_codes_state inflate_codes_statef;

inflate_codes_statef *inflate_codes_new (
    uInt, uInt,
    const inflate_huft *, const inflate_huft *,
    z_streamp );

int inflate_codes (
    inflate_blocks_statef *,
    z_streamp,
    int);

void inflate_codes_free (
    inflate_codes_statef *,
    z_streamp );




typedef enum
{
	IBM_TYPE,     // get type bits (3, including end bit)
	IBM_LENS,     // get lengths for stored
	IBM_STORED,   // processing stored block
	IBM_TABLE,    // get table lengths
	IBM_BTREE,    // get bit lengths tree for a dynamic block
	IBM_DTREE,    // get length, distance trees for a dynamic block
	IBM_CODES,    // processing fixed or dynamic block
	IBM_DRY,      // output remaining window bytes
	IBM_DONE,     // finished last block, done
	IBM_BAD
}      // got a data error--stuck here
inflate_block_mode;

// inflate blocks semi-private state
struct inflate_blocks_state
{

	// mode
	inflate_block_mode  mode;     // current inflate_block mode

	// mode dependent information
	union
	{
		uInt left;          // if STORED, bytes left to copy
		struct
		{
			uInt table;               // table lengths (14 bits)
			uInt index;               // index into blens (or border)
			uInt *blens;             // bit lengths of codes
			uInt bb;                  // bit length tree depth
			inflate_huft *tb;         // bit length decoding tree
		} trees;            // if DTREE, decoding info for trees
		struct
		{
			inflate_codes_statef
			*codes;
		} decode;           // if CODES, current state
	} sub;                // submode
	uInt last;            // true if this block is the last block

	// mode independent information
	uInt bitk;            // bits in bit buffer
	uLong bitb;           // bit buffer
	inflate_huft *hufts;  // single malloc for tree space
	Byte *window;        // sliding window
	Byte *end;           // one byte after sliding window
	Byte *read;          // window read pointer
	Byte *write;         // window write pointer
	check_func checkfn;   // check function
	uLong check;          // check on output

};


// defines for inflate input/output
//   update pointers and return
#define UPDBITS {s->bitb=b;s->bitk=k;}
#define UPDIN {z->avail_in=n;z->total_in+=(uLong)(p-z->next_in);z->next_in=p;}
#define UPDOUT {s->write=q;}
#define UPDATE {UPDBITS UPDIN UPDOUT}
#define LEAVE {UPDATE return inflate_flush(s,z,r);}
//   get bytes and bits
#define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
#define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
#define NEXTBYTE (n--,*p++)
#define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
#define DUMPBITS(j) {b>>=(j);k-=(j);}
//   output bytes
#define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
#define LOADOUT {q=s->write;m=(uInt)WAVAIL;m;}
#define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
#define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
#define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
#define OUTBYTE(a) {*q++=(Byte)(a);m--;}
//   load local pointers
#define LOAD {LOADIN LOADOUT}

// masks for lower bits (size given to avoid silly warnings with Visual C++)
// And'ing with mask[n] masks the lower n bits
const uInt inflate_mask[17] =
{
	0x0000,
	0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
	0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};

// copy as much as possible from the sliding window to the output area
int inflate_flush (inflate_blocks_statef *, z_streamp, int);

int inflate_fast (uInt, uInt, const inflate_huft *, const inflate_huft *, inflate_blocks_statef *, z_streamp );



const uInt fixed_bl = 9;
const uInt fixed_bd = 5;
const inflate_huft fixed_tl[] =
{
	{{{96, 7}}, 256}, {{{0, 8}}, 80}, {{{0, 8}}, 16}, {{{84, 8}}, 115},
	{{{82, 7}}, 31}, {{{0, 8}}, 112}, {{{0, 8}}, 48}, {{{0, 9}}, 192},
	{{{80, 7}}, 10}, {{{0, 8}}, 96}, {{{0, 8}}, 32}, {{{0, 9}}, 160},
	{{{0, 8}}, 0}, {{{0, 8}}, 128}, {{{0, 8}}, 64}, {{{0, 9}}, 224},
	{{{80, 7}}, 6}, {{{0, 8}}, 88}, {{{0, 8}}, 24}, {{{0, 9}}, 144},
	{{{83, 7}}, 59}, {{{0, 8}}, 120}, {{{0, 8}}, 56}, {{{0, 9}}, 208},
	{{{81, 7}}, 17}, {{{0, 8}}, 104}, {{{0, 8}}, 40}, {{{0, 9}}, 176},
	{{{0, 8}}, 8}, {{{0, 8}}, 136}, {{{0, 8}}, 72}, {{{0, 9}}, 240},
	{{{80, 7}}, 4}, {{{0, 8}}, 84}, {{{0, 8}}, 20}, {{{85, 8}}, 227},
	{{{83, 7}}, 43}, {{{0, 8}}, 116}, {{{0, 8}}, 52}, {{{0, 9}}, 200},
	{{{81, 7}}, 13}, {{{0, 8}}, 100}, {{{0, 8}}, 36}, {{{0, 9}}, 168},
	{{{0, 8}}, 4}, {{{0, 8}}, 132}, {{{0, 8}}, 68}, {{{0, 9}}, 232},
	{{{80, 7}}, 8}, {{{0, 8}}, 92}, {{{0, 8}}, 28}, {{{0, 9}}, 152},
	{{{84, 7}}, 83}, {{{0, 8}}, 124}, {{{0, 8}}, 60}, {{{0, 9}}, 216},
	{{{82, 7}}, 23}, {{{0, 8}}, 108}, {{{0, 8}}, 44}, {{{0, 9}}, 184},
	{{{0, 8}}, 12}, {{{0, 8}}, 140}, {{{0, 8}}, 76}, {{{0, 9}}, 248},
	{{{80, 7}}, 3}, {{{0, 8}}, 82}, {{{0, 8}}, 18}, {{{85, 8}}, 163},
	{{{83, 7}}, 35}, {{{0, 8}}, 114}, {{{0, 8}}, 50}, {{{0, 9}}, 196},
	{{{81, 7}}, 11}, {{{0, 8}}, 98}, {{{0, 8}}, 34}, {{{0, 9}}, 164},
	{{{0, 8}}, 2}, {{{0, 8}}, 130}, {{{0, 8}}, 66}, {{{0, 9}}, 228},
	{{{80, 7}}, 7}, {{{0, 8}}, 90}, {{{0, 8}}, 26}, {{{0, 9}}, 148},
	{{{84, 7}}, 67}, {{{0, 8}}, 122}, {{{0, 8}}, 58}, {{{0, 9}}, 212},
	{{{82, 7}}, 19}, {{{0, 8}}, 106}, {{{0, 8}}, 42}, {{{0, 9}}, 180},
	{{{0, 8}}, 10}, {{{0, 8}}, 138}, {{{0, 8}}, 74}, {{{0, 9}}, 244},
	{{{80, 7}}, 5}, {{{0, 8}}, 86}, {{{0, 8}}, 22}, {{{192, 8}}, 0},
	{{{83, 7}}, 51}, {{{0, 8}}, 118}, {{{0, 8}}, 54}, {{{0, 9}}, 204},
	{{{81, 7}}, 15}, {{{0, 8}}, 102}, {{{0, 8}}, 38}, {{{0, 9}}, 172},
	{{{0, 8}}, 6}, {{{0, 8}}, 134}, {{{0, 8}}, 70}, {{{0, 9}}, 236},
	{{{80, 7}}, 9}, {{{0, 8}}, 94}, {{{0, 8}}, 30}, {{{0, 9}}, 156},
	{{{84, 7}}, 99}, {{{0, 8}}, 126}, {{{0, 8}}, 62}, {{{0, 9}}, 220},
	{{{82, 7}}, 27}, {{{0, 8}}, 110}, {{{0, 8}}, 46}, {{{0, 9}}, 188},
	{{{0, 8}}, 14}, {{{0, 8}}, 142}, {{{0, 8}}, 78}, {{{0, 9}}, 252},
	{{{96, 7}}, 256}, {{{0, 8}}, 81}, {{{0, 8}}, 17}, {{{85, 8}}, 131},
	{{{82, 7}}, 31}, {{{0, 8}}, 113}, {{{0, 8}}, 49}, {{{0, 9}}, 194},
	{{{80, 7}}, 10}, {{{0, 8}}, 97}, {{{0, 8}}, 33}, {{{0, 9}}, 162},
	{{{0, 8}}, 1}, {{{0, 8}}, 129}, {{{0, 8}}, 65}, {{{0, 9}}, 226},
	{{{80, 7}}, 6}, {{{0, 8}}, 89}, {{{0, 8}}, 25}, {{{0, 9}}, 146},
	{{{83, 7}}, 59}, {{{0, 8}}, 121}, {{{0, 8}}, 57}, {{{0, 9}}, 210},
	{{{81, 7}}, 17}, {{{0, 8}}, 105}, {{{0, 8}}, 41}, {{{0, 9}}, 178},
	{{{0, 8}}, 9}, {{{0, 8}}, 137}, {{{0, 8}}, 73}, {{{0, 9}}, 242},
	{{{80, 7}}, 4}, {{{0, 8}}, 85}, {{{0, 8}}, 21}, {{{80, 8}}, 258},
	{{{83, 7}}, 43}, {{{0, 8}}, 117}, {{{0, 8}}, 53}, {{{0, 9}}, 202},
	{{{81, 7}}, 13}, {{{0, 8}}, 101}, {{{0, 8}}, 37}, {{{0, 9}}, 170},
	{{{0, 8}}, 5}, {{{0, 8}}, 133}, {{{0, 8}}, 69}, {{{0, 9}}, 234},
	{{{80, 7}}, 8}, {{{0, 8}}, 93}, {{{0, 8}}, 29}, {{{0, 9}}, 154},
	{{{84, 7}}, 83}, {{{0, 8}}, 125}, {{{0, 8}}, 61}, {{{0, 9}}, 218},
	{{{82, 7}}, 23}, {{{0, 8}}, 109}, {{{0, 8}}, 45}, {{{0, 9}}, 186},
	{{{0, 8}}, 13}, {{{0, 8}}, 141}, {{{0, 8}}, 77}, {{{0, 9}}, 250},
	{{{80, 7}}, 3}, {{{0, 8}}, 83}, {{{0, 8}}, 19}, {{{85, 8}}, 195},
	{{{83, 7}}, 35}, {{{0, 8}}, 115}, {{{0, 8}}, 51}, {{{0, 9}}, 198},
	{{{81, 7}}, 11}, {{{0, 8}}, 99}, {{{0, 8}}, 35}, {{{0, 9}}, 166},
	{{{0, 8}}, 3}, {{{0, 8}}, 131}, {{{0, 8}}, 67}, {{{0, 9}}, 230},
	{{{80, 7}}, 7}, {{{0, 8}}, 91}, {{{0, 8}}, 27}, {{{0, 9}}, 150},
	{{{84, 7}}, 67}, {{{0, 8}}, 123}, {{{0, 8}}, 59}, {{{0, 9}}, 214},
	{{{82, 7}}, 19}, {{{0, 8}}, 107}, {{{0, 8}}, 43}, {{{0, 9}}, 182},
	{{{0, 8}}, 11}, {{{0, 8}}, 139}, {{{0, 8}}, 75}, {{{0, 9}}, 246},
	{{{80, 7}}, 5}, {{{0, 8}}, 87}, {{{0, 8}}, 23}, {{{192, 8}}, 0},
	{{{83, 7}}, 51}, {{{0, 8}}, 119}, {{{0, 8}}, 55}, {{{0, 9}}, 206},
	{{{81, 7}}, 15}, {{{0, 8}}, 103}, {{{0, 8}}, 39}, {{{0, 9}}, 174},
	{{{0, 8}}, 7}, {{{0, 8}}, 135}, {{{0, 8}}, 71}, {{{0, 9}}, 238},
	{{{80, 7}}, 9}, {{{0, 8}}, 95}, {{{0, 8}}, 31}, {{{0, 9}}, 158},
	{{{84, 7}}, 99}, {{{0, 8}}, 127}, {{{0, 8}}, 63}, {{{0, 9}}, 222},
	{{{82, 7}}, 27}, {{{0, 8}}, 111}, {{{0, 8}}, 47}, {{{0, 9}}, 190},
	{{{0, 8}}, 15}, {{{0, 8}}, 143}, {{{0, 8}}, 79}, {{{0, 9}}, 254},
	{{{96, 7}}, 256}, {{{0, 8}}, 80}, {{{0, 8}}, 16}, {{{84, 8}}, 115},
	{{{82, 7}}, 31}, {{{0, 8}}, 112}, {{{0, 8}}, 48}, {{{0, 9}}, 193},
	{{{80, 7}}, 10}, {{{0, 8}}, 96}, {{{0, 8}}, 32}, {{{0, 9}}, 161},
	{{{0, 8}}, 0}, {{{0, 8}}, 128}, {{{0, 8}}, 64}, {{{0, 9}}, 225},
	{{{80, 7}}, 6}, {{{0, 8}}, 88}, {{{0, 8}}, 24}, {{{0, 9}}, 145},
	{{{83, 7}}, 59}, {{{0, 8}}, 120}, {{{0, 8}}, 56}, {{{0, 9}}, 209},
	{{{81, 7}}, 17}, {{{0, 8}}, 104}, {{{0, 8}}, 40}, {{{0, 9}}, 177},
	{{{0, 8}}, 8}, {{{0, 8}}, 136}, {{{0, 8}}, 72}, {{{0, 9}}, 241},
	{{{80, 7}}, 4}, {{{0, 8}}, 84}, {{{0, 8}}, 20}, {{{85, 8}}, 227},
	{{{83, 7}}, 43}, {{{0, 8}}, 116}, {{{0, 8}}, 52}, {{{0, 9}}, 201},
	{{{81, 7}}, 13}, {{{0, 8}}, 100}, {{{0, 8}}, 36}, {{{0, 9}}, 169},
	{{{0, 8}}, 4}, {{{0, 8}}, 132}, {{{0, 8}}, 68}, {{{0, 9}}, 233},
	{{{80, 7}}, 8}, {{{0, 8}}, 92}, {{{0, 8}}, 28}, {{{0, 9}}, 153},
	{{{84, 7}}, 83}, {{{0, 8}}, 124}, {{{0, 8}}, 60}, {{{0, 9}}, 217},
	{{{82, 7}}, 23}, {{{0, 8}}, 108}, {{{0, 8}}, 44}, {{{0, 9}}, 185},
	{{{0, 8}}, 12}, {{{0, 8}}, 140}, {{{0, 8}}, 76}, {{{0, 9}}, 249},
	{{{80, 7}}, 3}, {{{0, 8}}, 82}, {{{0, 8}}, 18}, {{{85, 8}}, 163},
	{{{83, 7}}, 35}, {{{0, 8}}, 114}, {{{0, 8}}, 50}, {{{0, 9}}, 197},
	{{{81, 7}}, 11}, {{{0, 8}}, 98}, {{{0, 8}}, 34}, {{{0, 9}}, 165},
	{{{0, 8}}, 2}, {{{0, 8}}, 130}, {{{0, 8}}, 66}, {{{0, 9}}, 229},
	{{{80, 7}}, 7}, {{{0, 8}}, 90}, {{{0, 8}}, 26}, {{{0, 9}}, 149},
	{{{84, 7}}, 67}, {{{0, 8}}, 122}, {{{0, 8}}, 58}, {{{0, 9}}, 213},
	{{{82, 7}}, 19}, {{{0, 8}}, 106}, {{{0, 8}}, 42}, {{{0, 9}}, 181},
	{{{0, 8}}, 10}, {{{0, 8}}, 138}, {{{0, 8}}, 74}, {{{0, 9}}, 245},
	{{{80, 7}}, 5}, {{{0, 8}}, 86}, {{{0, 8}}, 22}, {{{192, 8}}, 0},
	{{{83, 7}}, 51}, {{{0, 8}}, 118}, {{{0, 8}}, 54}, {{{0, 9}}, 205},
	{{{81, 7}}, 15}, {{{0, 8}}, 102}, {{{0, 8}}, 38}, {{{0, 9}}, 173},
	{{{0, 8}}, 6}, {{{0, 8}}, 134}, {{{0, 8}}, 70}, {{{0, 9}}, 237},
	{{{80, 7}}, 9}, {{{0, 8}}, 94}, {{{0, 8}}, 30}, {{{0, 9}}, 157},
	{{{84, 7}}, 99}, {{{0, 8}}, 126}, {{{0, 8}}, 62}, {{{0, 9}}, 221},
	{{{82, 7}}, 27}, {{{0, 8}}, 110}, {{{0, 8}}, 46}, {{{0, 9}}, 189},
	{{{0, 8}}, 14}, {{{0, 8}}, 142}, {{{0, 8}}, 78}, {{{0, 9}}, 253},
	{{{96, 7}}, 256}, {{{0, 8}}, 81}, {{{0, 8}}, 17}, {{{85, 8}}, 131},
	{{{82, 7}}, 31}, {{{0, 8}}, 113}, {{{0, 8}}, 49}, {{{0, 9}}, 195},
	{{{80, 7}}, 10}, {{{0, 8}}, 97}, {{{0, 8}}, 33}, {{{0, 9}}, 163},
	{{{0, 8}}, 1}, {{{0, 8}}, 129}, {{{0, 8}}, 65}, {{{0, 9}}, 227},
	{{{80, 7}}, 6}, {{{0, 8}}, 89}, {{{0, 8}}, 25}, {{{0, 9}}, 147},
	{{{83, 7}}, 59}, {{{0, 8}}, 121}, {{{0, 8}}, 57}, {{{0, 9}}, 211},
	{{{81, 7}}, 17}, {{{0, 8}}, 105}, {{{0, 8}}, 41}, {{{0, 9}}, 179},
	{{{0, 8}}, 9}, {{{0, 8}}, 137}, {{{0, 8}}, 73}, {{{0, 9}}, 243},
	{{{80, 7}}, 4}, {{{0, 8}}, 85}, {{{0, 8}}, 21}, {{{80, 8}}, 258},
	{{{83, 7}}, 43}, {{{0, 8}}, 117}, {{{0, 8}}, 53}, {{{0, 9}}, 203},
	{{{81, 7}}, 13}, {{{0, 8}}, 101}, {{{0, 8}}, 37}, {{{0, 9}}, 171},
	{{{0, 8}}, 5}, {{{0, 8}}, 133}, {{{0, 8}}, 69}, {{{0, 9}}, 235},
	{{{80, 7}}, 8}, {{{0, 8}}, 93}, {{{0, 8}}, 29}, {{{0, 9}}, 155},
	{{{84, 7}}, 83}, {{{0, 8}}, 125}, {{{0, 8}}, 61}, {{{0, 9}}, 219},
	{{{82, 7}}, 23}, {{{0, 8}}, 109}, {{{0, 8}}, 45}, {{{0, 9}}, 187},
	{{{0, 8}}, 13}, {{{0, 8}}, 141}, {{{0, 8}}, 77}, {{{0, 9}}, 251},
	{{{80, 7}}, 3}, {{{0, 8}}, 83}, {{{0, 8}}, 19}, {{{85, 8}}, 195},
	{{{83, 7}}, 35}, {{{0, 8}}, 115}, {{{0, 8}}, 51}, {{{0, 9}}, 199},
	{{{81, 7}}, 11}, {{{0, 8}}, 99}, {{{0, 8}}, 35}, {{{0, 9}}, 167},
	{{{0, 8}}, 3}, {{{0, 8}}, 131}, {{{0, 8}}, 67}, {{{0, 9}}, 231},
	{{{80, 7}}, 7}, {{{0, 8}}, 91}, {{{0, 8}}, 27}, {{{0, 9}}, 151},
	{{{84, 7}}, 67}, {{{0, 8}}, 123}, {{{0, 8}}, 59}, {{{0, 9}}, 215},
	{{{82, 7}}, 19}, {{{0, 8}}, 107}, {{{0, 8}}, 43}, {{{0, 9}}, 183},
	{{{0, 8}}, 11}, {{{0, 8}}, 139}, {{{0, 8}}, 75}, {{{0, 9}}, 247},
	{{{80, 7}}, 5}, {{{0, 8}}, 87}, {{{0, 8}}, 23}, {{{192, 8}}, 0},
	{{{83, 7}}, 51}, {{{0, 8}}, 119}, {{{0, 8}}, 55}, {{{0, 9}}, 207},
	{{{81, 7}}, 15}, {{{0, 8}}, 103}, {{{0, 8}}, 39}, {{{0, 9}}, 175},
	{{{0, 8}}, 7}, {{{0, 8}}, 135}, {{{0, 8}}, 71}, {{{0, 9}}, 239},
	{{{80, 7}}, 9}, {{{0, 8}}, 95}, {{{0, 8}}, 31}, {{{0, 9}}, 159},
	{{{84, 7}}, 99}, {{{0, 8}}, 127}, {{{0, 8}}, 63}, {{{0, 9}}, 223},
	{{{82, 7}}, 27}, {{{0, 8}}, 111}, {{{0, 8}}, 47}, {{{0, 9}}, 191},
	{{{0, 8}}, 15}, {{{0, 8}}, 143}, {{{0, 8}}, 79}, {{{0, 9}}, 255}
};
const inflate_huft fixed_td[] =
{
	{{{80, 5}}, 1}, {{{87, 5}}, 257}, {{{83, 5}}, 17}, {{{91, 5}}, 4097},
	{{{81, 5}}, 5}, {{{89, 5}}, 1025}, {{{85, 5}}, 65}, {{{93, 5}}, 16385},
	{{{80, 5}}, 3}, {{{88, 5}}, 513}, {{{84, 5}}, 33}, {{{92, 5}}, 8193},
	{{{82, 5}}, 9}, {{{90, 5}}, 2049}, {{{86, 5}}, 129}, {{{192, 5}}, 24577},
	{{{80, 5}}, 2}, {{{87, 5}}, 385}, {{{83, 5}}, 25}, {{{91, 5}}, 6145},
	{{{81, 5}}, 7}, {{{89, 5}}, 1537}, {{{85, 5}}, 97}, {{{93, 5}}, 24577},
	{{{80, 5}}, 4}, {{{88, 5}}, 769}, {{{84, 5}}, 49}, {{{92, 5}}, 12289},
	{{{82, 5}}, 13}, {{{90, 5}}, 3073}, {{{86, 5}}, 193}, {{{192, 5}}, 24577}
};







// copy as much as possible from the sliding window to the output area
int inflate_flush(inflate_blocks_statef *s, z_streamp z, int r)
{
	uInt n;
	Byte *p;
	Byte *q;

	// local copies of source and destination pointers
	p = z->next_out;
	q = s->read;

	// compute number of bytes to copy as far as end of window
	n = (uInt)((q <= s->write ? s->write : s->end) - q);

	if (n > z->avail_out) n = z->avail_out;

	if (n && r == Z_BUF_ERROR) r = Z_OK;

	// update counters
	z->avail_out -= n;
	z->total_out += n;

	// update check information
	if (s->checkfn != Z_NULL)
		z->adler = s->check = (*s->checkfn)(s->check, q, n);

	// copy as far as end of window
	if (n != 0)        // check for n!=0 to avoid waking up CodeGuard
	{
		memcpy(p, q, n);
		p += n;
		q += n;
	}

	// see if more to copy at beginning of window
	if (q == s->end)
	{
		// wrap pointers
		q = s->window;

		if (s->write == s->end)
			s->write = s->window;

		// compute bytes to copy
		n = (uInt)(s->write - q);

		if (n > z->avail_out) n = z->avail_out;

		if (n && r == Z_BUF_ERROR) r = Z_OK;

		// update counters
		z->avail_out -= n;
		z->total_out += n;

		// update check information
		if (s->checkfn != Z_NULL)
			z->adler = s->check = (*s->checkfn)(s->check, q, n);

		// copy
		if (n != 0)
		{
			memcpy(p, q, n);
			p += n;
			q += n;
		}
	}

	// update pointers
	z->next_out = p;
	s->read = q;

	// done
	return r;
}






// simplify the use of the inflate_huft type with some defines
#define exop word.what.Exop
#define bits word.what.Bits

typedef enum          // waiting for "i:"=input, "o:"=output, "x:"=nothing
{
	START,    // x: set up for LEN
	LEN,      // i: get length/literal/eob next
	LENEXT,   // i: getting length extra (have base)
	DIST,     // i: get distance next
	DISTEXT,  // i: getting distance extra
	COPY,     // o: copying bytes in window, waiting for space
	LIT,      // o: got literal, waiting for output space
	WASH,     // o: got eob, possibly still output waiting
	END,      // x: got eob and all data flushed
	BADCODE
}  // x: got error
inflate_codes_mode;

// inflate codes private state
struct inflate_codes_state
{

	// mode
	inflate_codes_mode mode;      // current inflate_codes mode

	// mode dependent information
	uInt len;
	union
	{
		struct
		{
			const inflate_huft *tree;       // pointer into tree
			uInt need;                // bits needed
		} code;             // if LEN or DIST, where in tree
		uInt lit;           // if LIT, literal
		struct
		{
			uInt get;                 // bits to get for extra
			uInt dist;                // distance back to copy from
		} copy;             // if EXT or COPY, where and how much
	} sub;                // submode

	// mode independent information
	Byte lbits;           // ltree bits decoded per branch
	Byte dbits;           // dtree bits decoder per branch
	const inflate_huft *ltree;          // literal/length/eob tree
	const inflate_huft *dtree;          // distance tree

};


inflate_codes_statef *inflate_codes_new(
    uInt bl, uInt bd,
    const inflate_huft *tl,
    const inflate_huft *td, // need separate declaration for Borland C++
    z_streamp z)
{
	inflate_codes_statef *c;

	if ((c = (inflate_codes_statef *)
	            ZALLOC(z, 1, sizeof(struct inflate_codes_state))) != Z_NULL)
	{
		c->mode = START;
		c->lbits = (Byte)bl;
		c->dbits = (Byte)bd;
		c->ltree = tl;
		c->dtree = td;
		LuTracev((stderr, "inflate:       codes new\n"));
	}

	return c;
}


int inflate_codes(inflate_blocks_statef *s, z_streamp z, int r)
{
	uInt j;               // temporary storage
	const inflate_huft *t;      // temporary pointer
	uInt e;               // extra bits or operation
	uLong b;              // bit buffer
	uInt k;               // bits in bit buffer
	Byte *p;             // input data pointer
	uInt n;               // bytes available there
	Byte *q;             // output window write pointer
	uInt m;               // bytes to end of window or read pointer
	Byte *f;             // pointer to copy strings from
	inflate_codes_statef *c = s->sub.decode.codes;  // codes state

	// copy input/output information to locals (UPDATE macro restores)
	LOAD

	// process input and output based on current state
	for (;;) switch (c->mode)
		{
			// waiting for "i:"=input, "o:"=output, "x:"=nothing
			case START:         // x: set up for LEN
#ifndef SLOW
				if (m >= 258 && n >= 10)
				{
					UPDATE
					r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
					LOAD

					if (r != Z_OK)
					{
						c->mode = r == Z_STREAM_END ? WASH : BADCODE;
						break;
					}
				}

#endif // !SLOW
				c->sub.code.need = c->lbits;
				c->sub.code.tree = c->ltree;
				c->mode = LEN;

			case LEN:           // i: get length/literal/eob next
				j = c->sub.code.need;
				NEEDBITS(j)
				t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
				DUMPBITS(t->bits)
				e = (uInt)(t->exop);

				if (e == 0)               // literal
				{
					c->sub.lit = t->base;
					LuTracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
					        "inflate:         literal '%c'\n" :
					        "inflate:         literal 0x%02x\n", t->base));
					c->mode = LIT;
					break;
				}

				if (e & 16)               // length
				{
					c->sub.copy.get = e & 15;
					c->len = t->base;
					c->mode = LENEXT;
					break;
				}

				if ((e & 64) == 0)        // next table
				{
					c->sub.code.need = e;
					c->sub.code.tree = t + t->base;
					break;
				}

				if (e & 32)               // end of block
				{
					LuTracevv((stderr, "inflate:         end of block\n"));
					c->mode = WASH;
					break;
				}

				c->mode = BADCODE;        // invalid code
				z->msg = (char *)"invalid literal/length code";
				r = Z_DATA_ERROR;
				LEAVE

			case LENEXT:        // i: getting length extra (have base)
				j = c->sub.copy.get;
				NEEDBITS(j)
				c->len += (uInt)b & inflate_mask[j];
				DUMPBITS(j)
				c->sub.code.need = c->dbits;
				c->sub.code.tree = c->dtree;
				LuTracevv((stderr, "inflate:         length %u\n", c->len));
				c->mode = DIST;

			case DIST:          // i: get distance next
				j = c->sub.code.need;
				NEEDBITS(j)
				t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
				DUMPBITS(t->bits)
				e = (uInt)(t->exop);

				if (e & 16)               // distance
				{
					c->sub.copy.get = e & 15;
					c->sub.copy.dist = t->base;
					c->mode = DISTEXT;
					break;
				}

				if ((e & 64) == 0)        // next table
				{
					c->sub.code.need = e;
					c->sub.code.tree = t + t->base;
					break;
				}

				c->mode = BADCODE;        // invalid code
				z->msg = (char *)"invalid distance code";
				r = Z_DATA_ERROR;
				LEAVE

			case DISTEXT:       // i: getting distance extra
				j = c->sub.copy.get;
				NEEDBITS(j)
				c->sub.copy.dist += (uInt)b & inflate_mask[j];
				DUMPBITS(j)
				LuTracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
				c->mode = COPY;

			case COPY:          // o: copying bytes in window, waiting for space
				f = q - c->sub.copy.dist;

				while (f < s->window)             // modulo window size-"while" instead
					f += s->end - s->window;        // of "if" handles invalid distances

				while (c->len)
				{
					NEEDOUT
					OUTBYTE(*f++)

					if (f == s->end)
						f = s->window;

					c->len--;
				}

				c->mode = START;
				break;

			case LIT:           // o: got literal, waiting for output space
				NEEDOUT
				OUTBYTE(c->sub.lit)
				c->mode = START;
				break;

			case WASH:          // o: got eob, possibly more output
				if (k > 7)        // return unused byte, if any
				{
					//Assert(k < 16, "inflate_codes grabbed too many bytes")
					k -= 8;
					n++;
					p--;            // can always return one
				}

				FLUSH

				if (s->read != s->write)
					LEAVE
					c->mode = END;

			case END:
				r = Z_STREAM_END;
				LEAVE

			case BADCODE:       // x: got error
				r = Z_DATA_ERROR;
				LEAVE

			default:
				r = Z_STREAM_ERROR;
				LEAVE
		}
}


void inflate_codes_free(inflate_codes_statef *c, z_streamp z)
{
	ZFREE(z, c);
	LuTracev((stderr, "inflate:       codes free\n"));
}



// infblock.c -- interpret and process block types to last block
// Copyright (C) 1995-1998 Mark Adler
// For conditions of distribution and use, see copyright notice in zlib.h

//struct inflate_codes_state {int dummy;}; // for buggy compilers



// Table for deflate from PKZIP's appnote.txt.
const uInt border[] =   // Order of the bit length code lengths
{
	16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};

//
// Notes beyond the 1.93a appnote.txt:
//
// 1. Distance pointers never point before the beginning of the output stream.
// 2. Distance pointers can point back across blocks, up to 32k away.
// 3. There is an implied maximum of 7 bits for the bit length table and
//    15 bits for the actual data.
// 4. If only one code exists, then it is encoded using one bit.  (Zero
//    would be more efficient, but perhaps a little confusing.)  If two
//    codes exist, they are coded using one bit each (0 and 1).
// 5. There is no way of sending zero distance codes--a dummy must be
//    sent if there are none.  (History: a pre 2.0 version of PKZIP would
//    store blocks with no distance codes, but this was discovered to be
//    too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
//    zero distance codes, which is sent as one code of zero bits in
//    length.
// 6. There are up to 286 literal/length codes.  Code 256 represents the
//    end-of-block.  Note however that the static length tree defines
//    288 codes just to fill out the Huffman codes.  Codes 286 and 287
//    cannot be used though, since there is no length base or extra bits
//    defined for them.  Similarily, there are up to 30 distance codes.
//    However, static trees define 32 codes (all 5 bits) to fill out the
//    Huffman codes, but the last two had better not show up in the data.
// 7. Unzip can check dynamic Huffman blocks for complete code sets.
//    The exception is that a single code would not be complete (see #4).
// 8. The five bits following the block type is really the number of
//    literal codes sent minus 257.
// 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
//    (1+6+6).  Therefore, to output three times the length, you output
//    three codes (1+1+1), whereas to output four times the same length,
//    you only need two codes (1+3).  Hmm.
//10. In the tree reconstruction algorithm, Code = Code + Increment
//    only if BitLength(i) is not zero.  (Pretty obvious.)
//11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
//12. Note: length code 284 can represent 227-258, but length code 285
//    really is 258.  The last length deserves its own, short code
//    since it gets used a lot in very redundant files.  The length
//    258 is special since 258 - 3 (the min match length) is 255.
//13. The literal/length and distance code bit lengths are read as a
//    single stream of lengths.  It is possible (and advantageous) for
//    a repeat code (16, 17, or 18) to go across the boundary between
//    the two sets of lengths.


void inflate_blocks_reset(inflate_blocks_statef *s, z_streamp z, uLong *c)
{
	if (c != Z_NULL)
		*c = s->check;

	if (s->mode == IBM_BTREE || s->mode == IBM_DTREE)
		ZFREE(z, s->sub.trees.blens);

	if (s->mode == IBM_CODES)
		inflate_codes_free(s->sub.decode.codes, z);

	s->mode = IBM_TYPE;
	s->bitk = 0;
	s->bitb = 0;
	s->read = s->write = s->window;

	if (s->checkfn != Z_NULL)
		z->adler = s->check = (*s->checkfn)(0L, (const Byte *)Z_NULL, 0);

	LuTracev((stderr, "inflate:   blocks reset\n"));
}


inflate_blocks_statef *inflate_blocks_new(z_streamp z, check_func c, uInt w)
{
	inflate_blocks_statef *s;

	if ((s = (inflate_blocks_statef *)ZALLOC
	            (z, 1, sizeof(struct inflate_blocks_state))) == Z_NULL)
		return s;

	if ((s->hufts =
	            (inflate_huft *)ZALLOC(z, sizeof(inflate_huft), MANY)) == Z_NULL)
	{
		ZFREE(z, s);
		return Z_NULL;
	}

	if ((s->window = (Byte *)ZALLOC(z, 1, w)) == Z_NULL)
	{
		ZFREE(z, s->hufts);
		ZFREE(z, s);
		return Z_NULL;
	}

	s->end = s->window + w;
	s->checkfn = c;
	s->mode = IBM_TYPE;
	LuTracev((stderr, "inflate:   blocks allocated\n"));
	inflate_blocks_reset(s, z, Z_NULL);
	return s;
}


int inflate_blocks(inflate_blocks_statef *s, z_streamp z, int r)
{
	uInt t;               // temporary storage
	uLong b;              // bit buffer
	uInt k;               // bits in bit buffer
	Byte *p;             // input data pointer
	uInt n;               // bytes available there
	Byte *q;             // output window write pointer
	uInt m;               // bytes to end of window or read pointer

	// copy input/output information to locals (UPDATE macro restores)
	LOAD

	// process input based on current state
	for (;;) switch (s->mode)
		{
			case IBM_TYPE:
				NEEDBITS(3)
				t = (uInt)b & 7;
				s->last = t & 1;

				switch (t >> 1)
				{
					case 0:                         // stored
						LuTracev((stderr, "inflate:     stored block%s\n",
						        s->last ? " (last)" : ""));
						DUMPBITS(3)
						t = k & 7;                    // go to byte boundary
						DUMPBITS(t)
						s->mode = IBM_LENS;               // get length of stored block
						break;

					case 1:                         // fixed
						LuTracev((stderr, "inflate:     fixed codes block%s\n",
						        s->last ? " (last)" : ""));
						{
							uInt bl, bd;
							const inflate_huft *tl, *td;

							inflate_trees_fixed(&bl, &bd, &tl, &td, z);
							s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);

							if (s->sub.decode.codes == Z_NULL)
							{
								r = Z_MEM_ERROR;
								LEAVE
							}
						}
						DUMPBITS(3)
						s->mode = IBM_CODES;
						break;

					case 2:                         // dynamic
						LuTracev((stderr, "inflate:     dynamic codes block%s\n",
						        s->last ? " (last)" : ""));
						DUMPBITS(3)
						s->mode = IBM_TABLE;
						break;

					case 3:                         // illegal
						DUMPBITS(3)
						s->mode = IBM_BAD;
						z->msg = (char *)"invalid block type";
						r = Z_DATA_ERROR;
						LEAVE
				}

				break;

			case IBM_LENS:
				NEEDBITS(32)
				if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
				{
					s->mode = IBM_BAD;
					z->msg = (char *)"invalid stored block lengths";
					r = Z_DATA_ERROR;
					LEAVE
				}

				s->sub.left = (uInt)b & 0xffff;
				b = k = 0;                      // dump bits
				LuTracev((stderr, "inflate:       stored length %u\n", s->sub.left));
				s->mode = s->sub.left ? IBM_STORED : (s->last ? IBM_DRY : IBM_TYPE);
				break;

			case IBM_STORED:
				if (n == 0)
					LEAVE
					NEEDOUT
					t = s->sub.left;

				if (t > n) t = n;

				if (t > m) t = m;

				memcpy(q, p, t);
				p += t;
				n -= t;
				q += t;
				m -= t;

				if ((s->sub.left -= t) != 0)
					break;

				LuTracev((stderr, "inflate:       stored end, %lu total out\n",
				        z->total_out + (q >= s->read ? q - s->read :
				            (s->end - s->read) + (q - s->window))));
				s->mode = s->last ? IBM_DRY : IBM_TYPE;
				break;

			case IBM_TABLE:
				NEEDBITS(14)
				s->sub.trees.table = t = (uInt)b & 0x3fff;

				// remove this section to workaround bug in pkzip
				if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
				{
					s->mode = IBM_BAD;
					z->msg = (char *)"too many length or distance symbols";
					r = Z_DATA_ERROR;
					LEAVE
				}

				// end remove
				t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);

				if ((s->sub.trees.blens = (uInt *)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
				{
					r = Z_MEM_ERROR;
					LEAVE
				}

				DUMPBITS(14)
				s->sub.trees.index = 0;
				LuTracev((stderr, "inflate:       table sizes ok\n"));
				s->mode = IBM_BTREE;

			case IBM_BTREE:
				while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
				{
					NEEDBITS(3)
					s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
					DUMPBITS(3)
				}

				while (s->sub.trees.index < 19)
					s->sub.trees.blens[border[s->sub.trees.index++]] = 0;

				s->sub.trees.bb = 7;
				t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
				        &s->sub.trees.tb, s->hufts, z);

				if (t != Z_OK)
				{
					r = t;

					if (r == Z_DATA_ERROR)
					{
						ZFREE(z, s->sub.trees.blens);
						s->mode = IBM_BAD;
					}

					LEAVE
				}

				s->sub.trees.index = 0;
				LuTracev((stderr, "inflate:       bits tree ok\n"));
				s->mode = IBM_DTREE;

			case IBM_DTREE:
				while (t = s->sub.trees.table,
				    s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
				{
					inflate_huft *h;
					uInt i, j, c;

					t = s->sub.trees.bb;
					NEEDBITS(t)
					h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
					t = h->bits;
					c = h->base;

					if (c < 16)
					{
						DUMPBITS(t)
						s->sub.trees.blens[s->sub.trees.index++] = c;
					}

					else // c == 16..18
					{
						i = c == 18 ? 7 : c - 14;
						j = c == 18 ? 11 : 3;
						NEEDBITS(t + i)
						DUMPBITS(t)
						j += (uInt)b & inflate_mask[i];
						DUMPBITS(i)
						i = s->sub.trees.index;
						t = s->sub.trees.table;

						if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
						    (c == 16 && i < 1))
						{
							ZFREE(z, s->sub.trees.blens);
							s->mode = IBM_BAD;
							z->msg = (char *)"invalid bit length repeat";
							r = Z_DATA_ERROR;
							LEAVE
						}

						c = c == 16 ? s->sub.trees.blens[i - 1] : 0;

						do
						{
							s->sub.trees.blens[i++] = c;
						} while (--j);

						s->sub.trees.index = i;
					}
				}

				s->sub.trees.tb = Z_NULL;
				{
					uInt bl, bd;
					inflate_huft *tl, *td;
					inflate_codes_statef *c;

					bl = 9;         // must be <= 9 for lookahead assumptions
					bd = 6;         // must be <= 9 for lookahead assumptions
					t = s->sub.trees.table;
					t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
					        s->sub.trees.blens, &bl, &bd, &tl, &td,
					        s->hufts, z);

					if (t != Z_OK)
					{
						if (t == (uInt)Z_DATA_ERROR)
						{
							ZFREE(z, s->sub.trees.blens);
							s->mode = IBM_BAD;
						}

						r = t;
						LEAVE
					}

					LuTracev((stderr, "inflate:       trees ok\n"));

					if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
					{
						r = Z_MEM_ERROR;
						LEAVE
					}

					s->sub.decode.codes = c;
				}
				ZFREE(z, s->sub.trees.blens);
				s->mode = IBM_CODES;

			case IBM_CODES:
				UPDATE
				if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
					return inflate_flush(s, z, r);

				r = Z_OK;
				inflate_codes_free(s->sub.decode.codes, z);
				LOAD
				LuTracev((stderr, "inflate:       codes end, %lu total out\n",
				        z->total_out + (q >= s->read ? q - s->read :
				            (s->end - s->read) + (q - s->window))));

				if (!s->last)
				{
					s->mode = IBM_TYPE;
					break;
				}

				s->mode = IBM_DRY;

			case IBM_DRY:
				FLUSH
				if (s->read != s->write)
					LEAVE
					s->mode = IBM_DONE;

			case IBM_DONE:
				r = Z_STREAM_END;
				LEAVE

			case IBM_BAD:
				r = Z_DATA_ERROR;
				LEAVE

			default:
				r = Z_STREAM_ERROR;
				LEAVE
		}
}


int inflate_blocks_free(inflate_blocks_statef *s, z_streamp z)
{
	inflate_blocks_reset(s, z, Z_NULL);
	ZFREE(z, s->window);
	ZFREE(z, s->hufts);
	ZFREE(z, s);
	LuTracev((stderr, "inflate:   blocks freed\n"));
	return Z_OK;
}



// inftrees.c -- generate Huffman trees for efficient decoding
// Copyright (C) 1995-1998 Mark Adler
// For conditions of distribution and use, see copyright notice in zlib.h
//



extern const char inflate_copyright[] =
    " inflate 1.1.3 Copyright 1995-1998 Mark Adler ";
// If you use the zlib library in a product, an acknowledgment is welcome
// in the documentation of your product. If for some reason you cannot
// include such an acknowledgment, I would appreciate that you keep this
// copyright string in the executable of your product.



int huft_build (
    uInt *,            // code lengths in bits
    uInt,               // number of codes
    uInt,               // number of "simple" codes
    const uInt *,      // list of base values for non-simple codes
    const uInt *,      // list of extra bits for non-simple codes
    inflate_huft **,// result: starting table
    uInt *,            // maximum lookup bits (returns actual)
    inflate_huft *,     // space for trees
    uInt *,             // hufts used in space
    uInt * );         // space for values

// Tables for deflate from PKZIP's appnote.txt.
const uInt cplens[31] =   // Copy lengths for literal codes 257..285
{
	3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
	35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0
};
// see note #13 above about 258
const uInt cplext[31] =   // Extra bits for literal codes 257..285
{
	0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
	3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112
}; // 112==invalid
const uInt cpdist[30] =   // Copy offsets for distance codes 0..29
{
	1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
	257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
	8193, 12289, 16385, 24577
};
const uInt cpdext[30] =   // Extra bits for distance codes
{
	0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
	7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
	12, 12, 13, 13
};

//
//   Huffman code decoding is performed using a multi-level table lookup.
//   The fastest way to decode is to simply build a lookup table whose
//   size is determined by the longest code.  However, the time it takes
//   to build this table can also be a factor if the data being decoded
//   is not very long.  The most common codes are necessarily the
//   shortest codes, so those codes dominate the decoding time, and hence
//   the speed.  The idea is you can have a shorter table that decodes the
//   shorter, more probable codes, and then point to subsidiary tables for
//   the longer codes.  The time it costs to decode the longer codes is
//   then traded against the time it takes to make longer tables.
//
//   This results of this trade are in the variables lbits and dbits
//   below.  lbits is the number of bits the first level table for literal/
//   length codes can decode in one step, and dbits is the same thing for
//   the distance codes.  Subsequent tables are also less than or equal to
//   those sizes.  These values may be adjusted either when all of the
//   codes are shorter than that, in which case the longest code length in
//   bits is used, or when the shortest code is *longer* than the requested
//   table size, in which case the length of the shortest code in bits is
//   used.
//
//   There are two different values for the two tables, since they code a
//   different number of possibilities each.  The literal/length table
//   codes 286 possible values, or in a flat code, a little over eight
//   bits.  The distance table codes 30 possible values, or a little less
//   than five bits, flat.  The optimum values for speed end up being
//   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
//   The optimum values may differ though from machine to machine, and
//   possibly even between compilers.  Your mileage may vary.
//


// If BMAX needs to be larger than 16, then h and x[] should be uLong.
#define BMAX 15         // maximum bit length of any code

int huft_build(
    uInt *b,               // code lengths in bits (all assumed <= BMAX)
    uInt n,                 // number of codes (assumed <= 288)
    uInt s,                 // number of simple-valued codes (0..s-1)
    const uInt *d,         // list of base values for non-simple codes
    const uInt *e,         // list of extra bits for non-simple codes
    inflate_huft * *t,  // result: starting table
    uInt *m,               // maximum lookup bits, returns actual
    inflate_huft *hp,       // space for trees
    uInt *hn,               // hufts used in space
    uInt *v)               // working area: values in order of bit length
// Given a list of code lengths and a maximum table size, make a set of
// tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
// if the given code set is incomplete (the tables are still built in this
// case), or Z_DATA_ERROR if the input is invalid.
{

	uInt a;                       // counter for codes of length k
	uInt c[BMAX + 1];             // bit length count table
	uInt f;                       // i repeats in table every f entries
	int g;                        // maximum code length
	int h;                        // table level
	register uInt i;              // counter, current code
	register uInt j;              // counter
	register int k;               // number of bits in current code
	int l;                        // bits per table (returned in m)
	uInt mask;                    // (1 << w) - 1, to avoid cc -O bug on HP
	register uInt *p;            // pointer into c[], b[], or v[]
	inflate_huft *q;              // points to current table
	struct inflate_huft_s r;      // table entry for structure assignment
	inflate_huft *u[BMAX];        // table stack
	register int w;               // bits before this table == (l * h)
	uInt x[BMAX + 1];             // bit offsets, then code stack
	uInt *xp;                    // pointer into x
	int y;                        // number of dummy codes added
	uInt z;                       // number of entries in current table


	// Generate counts for each bit length
	p = c;
#define C0 *p++ = 0;
#define C2 C0 C0 C0 C0
#define C4 C2 C2 C2 C2
	C4;
	p;                          // clear c[]--assume BMAX+1 is 16
	p = b;
	i = n;

	do
	{
		c[*p++]++;                  // assume all entries <= BMAX
	} while (--i);

	if (c[0] == n)                // null input--all zero length codes
	{
		*t = (inflate_huft *)Z_NULL;
		*m = 0;
		return Z_OK;
	}


	// Find minimum and maximum length, bound *m by those
	l = *m;

	for (j = 1; j <= BMAX; j++)
		if (c[j])
			break;

	k = j;                        // minimum code length

	if ((uInt)l < j)
		l = j;

	for (i = BMAX; i; i--)
		if (c[i])
			break;

	g = i;                        // maximum code length

	if ((uInt)l > i)
		l = i;

	*m = l;


	// Adjust last length count to fill out codes, if needed
	for (y = 1 << j; j < i; j++, y <<= 1)
		if ((y -= c[j]) < 0)
			return Z_DATA_ERROR;

	if ((y -= c[i]) < 0)
		return Z_DATA_ERROR;

	c[i] += y;


	// Generate starting offsets into the value table for each length
	x[1] = j = 0;
	p = c + 1;
	xp = x + 2;

	while (--i)                   // note that i == g from above
	{
		*xp++ = (j += *p++);
	}


	// Make a table of values in order of bit lengths
	p = b;
	i = 0;

	do
	{
		if ((j = *p++) != 0)
			v[x[j]++] = i;
	} while (++i < n);

	n = x[g];                     // set n to length of v


	// Generate the Huffman codes and for each, make the table entries
	x[0] = i = 0;                 // first Huffman code is zero
	p = v;                        // grab values in bit order
	h = -1;                       // no tables yet--level -1
	w = -l;                       // bits decoded == (l * h)
	u[0] = (inflate_huft *)Z_NULL;        // just to keep compilers happy
	q = (inflate_huft *)Z_NULL;   // ditto
	z = 0;                        // ditto

	// go through the bit lengths (k already is bits in shortest code)
	for (; k <= g; k++)
	{
		a = c[k];

		while (a--)
		{
			// here i is the Huffman code of length k bits for value *p
			// make tables up to required level
			while (k > w + l)
			{
				h++;
				w += l;                 // previous table always l bits

				// compute minimum size table less than or equal to l bits
				z = g - w;
				z = z > (uInt)l ? l : z;        // table size upper limit

				if ((f = 1 << (j = k - w)) > a + 1)     // try a k-w bit table
				{
					// too few codes for k-w bit table
					f -= a + 1;           // deduct codes from patterns left
					xp = c + k;

					if (j < z)
						while (++j < z)     // try smaller tables up to z bits
						{
							if ((f <<= 1) <= *++xp)
								break;          // enough codes to use up j bits

							f -= *xp;         // else deduct codes from patterns
						}
				}

				z = 1 << j;             // table entries for j-bit table

				// allocate new table
				if (*hn + z > MANY)     // (note: doesn't matter for fixed)
					return Z_DATA_ERROR;  // overflow of MANY

				u[h] = q = hp + *hn;
				*hn += z;

				// connect to last table, if there is one
				if (h)
				{
					x[h] = i;             // save pattern for backing up
					r.bits = (Byte)l;     // bits to dump before this table
					r.exop = (Byte)j;     // bits in this table
					j = i >> (w - l);
					r.base = (uInt)(q - u[h - 1] - j); // offset to this table
					u[h - 1][j] = r;      // connect to last table
				}

				else
					*t = q;               // first table is returned result
			}

			// set up table entry in r
			r.bits = (Byte)(k - w);

			if (p >= v + n)
				r.exop = 128 + 64;      // out of values--invalid code

			else if (*p < s)
			{
				r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     // 256 is end-of-block
				r.base = *p++;          // simple code is just the value
			}

			else
			{
				r.exop = (Byte)(e[*p - s] + 16 + 64);// non-simple--look up in lists
				r.base = d[*p++ - s];
			}

			// fill code-like entries with r
			f = 1 << (k - w);

			for (j = i >> w; j < z; j += f)
				q[j] = r;

			// backwards increment the k-bit code i
			for (j = 1 << (k - 1); i & j; j >>= 1)
				i ^= j;

			i ^= j;

			// backup over finished tables
			mask = (1 << w) - 1;      // needed on HP, cc -O bug

			while ((i & mask) != x[h])
			{
				h--;                    // don't need to update q
				w -= l;
				mask = (1 << w) - 1;
			}
		}
	}


	// Return Z_BUF_ERROR if we were given an incomplete table
	return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
}


int inflate_trees_bits(
    uInt *c,               // 19 code lengths
    uInt *bb,              // bits tree desired/actual depth
    inflate_huft * *tb, // bits tree result
    inflate_huft *hp,       // space for trees
    z_streamp z)            // for messages
{
	int r;
	uInt hn = 0;          // hufts used in space
	uInt *v;             // work area for huft_build

	if ((v = (uInt *)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
		return Z_MEM_ERROR;

	r = huft_build(c, 19, 19, (uInt *)Z_NULL, (uInt *)Z_NULL,
	        tb, bb, hp, &hn, v);

	if (r == Z_DATA_ERROR)
		z->msg = (char *)"oversubscribed dynamic bit lengths tree";

	else if (r == Z_BUF_ERROR || *bb == 0)
	{
		z->msg = (char *)"incomplete dynamic bit lengths tree";
		r = Z_DATA_ERROR;
	}

	ZFREE(z, v);
	return r;
}


int inflate_trees_dynamic(
    uInt nl,                // number of literal/length codes
    uInt nd,                // number of distance codes
    uInt *c,               // that many (total) code lengths
    uInt *bl,              // literal desired/actual bit depth
    uInt *bd,              // distance desired/actual bit depth
    inflate_huft * *tl, // literal/length tree result
    inflate_huft * *td, // distance tree result
    inflate_huft *hp,       // space for trees
    z_streamp z)            // for messages
{
	int r;
	uInt hn = 0;          // hufts used in space
	uInt *v;             // work area for huft_build

	// allocate work area
	if ((v = (uInt *)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
		return Z_MEM_ERROR;

	// build literal/length tree
	r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);

	if (r != Z_OK || *bl == 0)
	{
		if (r == Z_DATA_ERROR)
			z->msg = (char *)"oversubscribed literal/length tree";

		else if (r != Z_MEM_ERROR)
		{
			z->msg = (char *)"incomplete literal/length tree";
			r = Z_DATA_ERROR;
		}

		ZFREE(z, v);
		return r;
	}

	// build distance tree
	r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);

	if (r != Z_OK || (*bd == 0 && nl > 257))
	{
		if (r == Z_DATA_ERROR)
			z->msg = (char *)"oversubscribed distance tree";

		else if (r == Z_BUF_ERROR)
		{
			z->msg = (char *)"incomplete distance tree";
			r = Z_DATA_ERROR;
		}

		else if (r != Z_MEM_ERROR)
		{
			z->msg = (char *)"empty distance tree with lengths";
			r = Z_DATA_ERROR;
		}

		ZFREE(z, v);
		return r;
	}

	// done
	ZFREE(z, v);
	return Z_OK;
}





int inflate_trees_fixed(
    uInt *bl,               // literal desired/actual bit depth
    uInt *bd,               // distance desired/actual bit depth
    const inflate_huft * * tl,     // literal/length tree result
    const inflate_huft * *td,     // distance tree result
    z_streamp )             // for memory allocation
{
	*bl = fixed_bl;
	*bd = fixed_bd;
	*tl = fixed_tl;
	*td = fixed_td;
	return Z_OK;
}


// inffast.c -- process literals and length/distance pairs fast
// Copyright (C) 1995-1998 Mark Adler
// For conditions of distribution and use, see copyright notice in zlib.h
//


//struct inflate_codes_state {int dummy;}; // for buggy compilers


// macros for bit input with no checking and for returning unused bytes
#define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
#define UNGRAB {c=z->avail_in-n;c=(k>>3)<c?k>>3:c;n+=c;p-=c;k-=c<<3;}

// Called with number of bytes left to write in window at least 258
// (the maximum string length) and number of input bytes available
// at least ten.  The ten bytes are six bytes for the longest length/
// distance pair plus four bytes for overloading the bit buffer.

int inflate_fast(
    uInt bl, uInt bd,
    const inflate_huft *tl,
    const inflate_huft *td, // need separate declaration for Borland C++
    inflate_blocks_statef *s,
    z_streamp z)
{
	const inflate_huft *t;      // temporary pointer
	uInt e;               // extra bits or operation
	uLong b;              // bit buffer
	uInt k;               // bits in bit buffer
	Byte *p;             // input data pointer
	uInt n;               // bytes available there
	Byte *q;             // output window write pointer
	uInt m;               // bytes to end of window or read pointer
	uInt ml;              // mask for literal/length tree
	uInt md;              // mask for distance tree
	uInt c;               // bytes to copy
	uInt d;               // distance back to copy from
	Byte *r;             // copy source pointer

	// load input, output, bit values
	LOAD

	// initialize masks
	ml = inflate_mask[bl];
	md = inflate_mask[bd];

	// do until not enough input or output space for fast loop
	do                            // assume called with m >= 258 && n >= 10
	{
		// get literal/length code
		GRABBITS(20)                // max bits for literal/length code

		if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
		{
			DUMPBITS(t->bits)
			LuTracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
			        "inflate:         * literal '%c'\n" :
			        "inflate:         * literal 0x%02x\n", t->base));
			*q++ = (Byte)t->base;
			m--;
			continue;
		}

		for (;;)
		{
			DUMPBITS(t->bits)

			if (e & 16)
			{
				// get extra bits for length
				e &= 15;
				c = t->base + ((uInt)b & inflate_mask[e]);
				DUMPBITS(e)
				LuTracevv((stderr, "inflate:         * length %u\n", c));

				// decode distance base of block to copy
				GRABBITS(15);           // max bits for distance code
				e = (t = td + ((uInt)b & md))->exop;

				for (;;)
				{
					DUMPBITS(t->bits)

					if (e & 16)
					{
						// get extra bits to add to distance base
						e &= 15;
						GRABBITS(e)         // get extra bits (up to 13)
						d = t->base + ((uInt)b & inflate_mask[e]);
						DUMPBITS(e)
						LuTracevv((stderr, "inflate:         * distance %u\n", d));

						// do the copy
						m -= c;
						r = q - d;

						if (r < s->window)                  // wrap if needed
						{
							do
							{
								r += s->end - s->window;        // force pointer in window
							} while (r < s->window);          // covers invalid distances

							e = (uInt) (s->end - r);

							if (c > e)
							{
								c -= e;                         // wrapped copy

								do
								{
									*q++ = *r++;
								} while (--e);

								r = s->window;

								do
								{
									*q++ = *r++;
								} while (--c);
							}

							else                              // normal copy
							{
								*q++ = *r++;
								c--;
								*q++ = *r++;
								c--;

								do
								{
									*q++ = *r++;
								} while (--c);
							}
						}

						else                                /* normal copy */
						{
							*q++ = *r++;
							c--;
							*q++ = *r++;
							c--;

							do
							{
								*q++ = *r++;
							} while (--c);
						}

						break;
					}

					else if ((e & 64) == 0)
					{
						t += t->base;
						e = (t += ((uInt)b & inflate_mask[e]))->exop;
					}

					else
					{
						z->msg = (char *)"invalid distance code";
						UNGRAB
						UPDATE
						return Z_DATA_ERROR;
					}
				};

				break;
			}

			if ((e & 64) == 0)
			{
				t += t->base;

				if ((e = (t += ((uInt)b & inflate_mask[e]))->exop) == 0)
				{
					DUMPBITS(t->bits)
					LuTracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
					        "inflate:         * literal '%c'\n" :
					        "inflate:         * literal 0x%02x\n", t->base));
					*q++ = (Byte)t->base;
					m--;
					break;
				}
			}

			else if (e & 32)
			{
				LuTracevv((stderr, "inflate:         * end of block\n"));
				UNGRAB
				UPDATE
				return Z_STREAM_END;
			}

			else
			{
				z->msg = (char *)"invalid literal/length code";
				UNGRAB
				UPDATE
				return Z_DATA_ERROR;
			}
		};
	} while (m >= 258 && n >= 10);

	// not enough input or output--restore pointers and return
	UNGRAB
	UPDATE
	return Z_OK;
}






// crc32.c -- compute the CRC-32 of a data stream
// Copyright (C) 1995-1998 Mark Adler
// For conditions of distribution and use, see copyright notice in zlib.h

// @(#) $Id$






// Table of CRC-32's of all single-byte values (made by make_crc_table)
const uLong crc_table[256] =
{
	0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
	0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
	0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
	0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
	0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
	0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
	0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
	0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
	0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
	0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
	0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
	0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
	0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
	0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
	0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
	0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
	0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
	0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
	0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
	0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
	0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
	0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
	0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
	0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
	0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
	0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
	0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
	0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
	0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
	0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
	0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
	0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
	0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
	0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
	0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
	0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
	0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
	0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
	0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
	0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
	0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
	0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
	0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
	0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
	0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
	0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
	0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
	0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
	0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
	0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
	0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
	0x2d02ef8dL
};

const uLong *get_crc_table()
{
	return (const uLong *)crc_table;
}

#define CRC_DO1(buf) crc = crc_table[((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8);
#define CRC_DO2(buf)  CRC_DO1(buf); CRC_DO1(buf);
#define CRC_DO4(buf)  CRC_DO2(buf); CRC_DO2(buf);
#define CRC_DO8(buf)  CRC_DO4(buf); CRC_DO4(buf);

uLong ucrc32(uLong crc, const Byte *buf, uInt len)
{
	if (buf == Z_NULL) return 0L;

	crc = crc ^ 0xffffffffL;

	while (len >= 8)
	{
		CRC_DO8(buf);
		len -= 8;
	}

	if (len) do
		{
			CRC_DO1(buf);
		} while (--len);

	return crc ^ 0xffffffffL;
}



// =============================================================
// some decryption routines
#define CRC32(c, b) (crc_table[((int)(c)^(b))&0xff]^((c)>>8))
void Uupdate_keys(unsigned long *keys, char c)
{
	keys[0] = CRC32(keys[0], c);
	keys[1] += keys[0] & 0xFF;
	keys[1] = keys[1] * 134775813L + 1;
	keys[2] = CRC32(keys[2], keys[1] >> 24);
}
char Udecrypt_byte(unsigned long *keys)
{
	unsigned temp = ((unsigned)keys[2] & 0xffff) | 2;
	return (char)(((temp * (temp ^ 1)) >> 8) & 0xff);
}
char zdecode(unsigned long *keys, char c)
{
	c ^= Udecrypt_byte(keys);
	Uupdate_keys(keys, c);
	return c;
}



// adler32.c -- compute the Adler-32 checksum of a data stream
// Copyright (C) 1995-1998 Mark Adler
// For conditions of distribution and use, see copyright notice in zlib.h

// @(#) $Id$


#define BASE 65521L // largest prime smaller than 65536
#define NMAX 5552
// NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1

#define AD_DO1(buf,i)  {s1 += buf[i]; s2 += s1;}
#define AD_DO2(buf,i)  AD_DO1(buf,i); AD_DO1(buf,i+1);
#define AD_DO4(buf,i)  AD_DO2(buf,i); AD_DO2(buf,i+2);
#define AD_DO8(buf,i)  AD_DO4(buf,i); AD_DO4(buf,i+4);
#define AD_DO16(buf)   AD_DO8(buf,0); AD_DO8(buf,8);

// =========================================================================
uLong adler32(uLong adler, const Byte *buf, uInt len)
{
	unsigned long s1 = adler & 0xffff;
	unsigned long s2 = (adler >> 16) & 0xffff;
	int k;

	if (buf == Z_NULL) return 1L;

	while (len > 0)
	{
		k = len < NMAX ? len : NMAX;
		len -= k;

		while (k >= 16)
		{
			AD_DO16(buf);
			buf += 16;
			k -= 16;
		}

		if (k != 0) do
			{
				s1 += *buf++;
				s2 += s1;
			} while (--k);

		s1 %= BASE;
		s2 %= BASE;
	}

	return (s2 << 16) | s1;
}



// zutil.c -- target dependent utility functions for the compression library
// Copyright (C) 1995-1998 Jean-loup Gailly.
// For conditions of distribution and use, see copyright notice in zlib.h
// @(#) $Id$






const char *zlibVersion()
{
	return ZLIB_VERSION;
}

// exported to allow conversion of error code to string for compress() and
// uncompress()
const char *zError(int err)
{
	return ERR_MSG(err);
}




voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
{
	if (opaque) items += size - size; // make compiler happy

	return (voidpf)calloc(items, size);
}

void  zcfree (voidpf opaque, voidpf ptr)
{
	zfree(ptr);

	if (opaque) return; // make compiler happy
}



// inflate.c -- zlib interface to inflate modules
// Copyright (C) 1995-1998 Mark Adler
// For conditions of distribution and use, see copyright notice in zlib.h

//struct inflate_blocks_state {int dummy;}; // for buggy compilers

typedef enum
{
	IM_METHOD,   // waiting for method byte
	IM_FLAG,     // waiting for flag byte
	IM_DICT4,    // four dictionary check bytes to go
	IM_DICT3,    // three dictionary check bytes to go
	IM_DICT2,    // two dictionary check bytes to go
	IM_DICT1,    // one dictionary check byte to go
	IM_DICT0,    // waiting for inflateSetDictionary
	IM_BLOCKS,   // decompressing blocks
	IM_CHECK4,   // four check bytes to go
	IM_CHECK3,   // three check bytes to go
	IM_CHECK2,   // two check bytes to go
	IM_CHECK1,   // one check byte to go
	IM_DONE,     // finished check, done
	IM_BAD
}      // got an error--stay here
inflate_mode;

// inflate private state
struct internal_state
{

	// mode
	inflate_mode  mode;   // current inflate mode

	// mode dependent information
	union
	{
		uInt method;        // if IM_FLAGS, method byte
		struct
		{
			uLong was;                // computed check value
			uLong need;               // stream check value
		} check;            // if CHECK, check values to compare
		uInt marker;        // if IM_BAD, inflateSync's marker bytes count
	} sub;        // submode

	// mode independent information
	int  nowrap;          // flag for no wrapper
	uInt wbits;           // log2(window size)  (8..15, defaults to 15)
	inflate_blocks_statef
	*blocks;            // current inflate_blocks state

};

int inflateReset(z_streamp z)
{
	if (z == Z_NULL || z->state == Z_NULL)
		return Z_STREAM_ERROR;

	z->total_in = z->total_out = 0;
	z->msg = Z_NULL;
	z->state->mode = z->state->nowrap ? IM_BLOCKS : IM_METHOD;
	inflate_blocks_reset(z->state->blocks, z, Z_NULL);
	LuTracev((stderr, "inflate: reset\n"));
	return Z_OK;
}

int inflateEnd(z_streamp z)
{
	if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
		return Z_STREAM_ERROR;

	if (z->state->blocks != Z_NULL)
		inflate_blocks_free(z->state->blocks, z);

	ZFREE(z, z->state);
	z->state = Z_NULL;
	LuTracev((stderr, "inflate: end\n"));
	return Z_OK;
}


int inflateInit2(z_streamp z)
{
	const char *version = ZLIB_VERSION;
	int stream_size = sizeof(z_stream);

	if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || stream_size != sizeof(z_stream)) return Z_VERSION_ERROR;

	int w = -15; // MAX_WBITS: 32K LZ77 window.
	// Warning: reducing MAX_WBITS makes minigzip unable to extract .gz files created by gzip.
	// The memory requirements for deflate are (in bytes):
	//            (1 << (windowBits+2)) +  (1 << (memLevel+9))
	// that is: 128K for windowBits=15  +  128K for memLevel = 8  (default values)
	// plus a few kilobytes for small objects. For example, if you want to reduce
	// the default memory requirements from 256K to 128K, compile with
	//     make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7"
	// Of course this will generally degrade compression (there's no free lunch).
	//
	//   The memory requirements for inflate are (in bytes) 1 << windowBits
	// that is, 32K for windowBits=15 (default value) plus a few kilobytes
	// for small objects.

	// initialize state
	if (z == Z_NULL) return Z_STREAM_ERROR;

	z->msg = Z_NULL;

	if (z->zalloc == Z_NULL)
	{
		z->zalloc = zcalloc;
		z->opaque = (voidpf)0;
	}

	if (z->zfree == Z_NULL) z->zfree = zcfree;

	if ((z->state = (struct internal_state *)
	            ZALLOC(z, 1, sizeof(struct internal_state))) == Z_NULL)
		return Z_MEM_ERROR;

	z->state->blocks = Z_NULL;

	// handle undocumented nowrap option (no zlib header or check)
	z->state->nowrap = 0;

	if (w < 0)
	{
		w = - w;
		z->state->nowrap = 1;
	}

	// set window size
	if (w < 8 || w > 15)
	{
		inflateEnd(z);
		return Z_STREAM_ERROR;
	}

	z->state->wbits = (uInt)w;

	// create inflate_blocks state
	if ((z->state->blocks =
	            inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
	    == Z_NULL)
	{
		inflateEnd(z);
		return Z_MEM_ERROR;
	}

	LuTracev((stderr, "inflate: allocated\n"));

	// reset state
	inflateReset(z);
	return Z_OK;
}



#define IM_NEEDBYTE {if(z->avail_in==0)return r;r=f;}
#define IM_NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)

int inflate(z_streamp z, int f)
{
	int r;
	uInt b;

	if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL)
		return Z_STREAM_ERROR;

	f = f == Z_FINISH ? Z_BUF_ERROR : Z_OK;
	r = Z_BUF_ERROR;

	for (;;) switch (z->state->mode)
		{
			case IM_METHOD:
				IM_NEEDBYTE
				if (((z->state->sub.method = IM_NEXTBYTE) & 0xf) != Z_DEFLATED)
				{
					z->state->mode = IM_BAD;
					z->msg = (char *)"unknown compression method";
					z->state->sub.marker = 5;       // can't try inflateSync
					break;
				}

				if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
				{
					z->state->mode = IM_BAD;
					z->msg = (char *)"invalid window size";
					z->state->sub.marker = 5;       // can't try inflateSync
					break;
				}

				z->state->mode = IM_FLAG;

			case IM_FLAG:
				IM_NEEDBYTE
				b = IM_NEXTBYTE;

				if (((z->state->sub.method << 8) + b) % 31)
				{
					z->state->mode = IM_BAD;
					z->msg = (char *)"incorrect header check";
					z->state->sub.marker = 5;       // can't try inflateSync
					break;
				}

				LuTracev((stderr, "inflate: zlib header ok\n"));

				if (!(b & PRESET_DICT))
				{
					z->state->mode = IM_BLOCKS;
					break;
				}

				z->state->mode = IM_DICT4;

			case IM_DICT4:
				IM_NEEDBYTE
				z->state->sub.check.need = (uLong)IM_NEXTBYTE << 24;
				z->state->mode = IM_DICT3;

			case IM_DICT3:
				IM_NEEDBYTE
				z->state->sub.check.need += (uLong)IM_NEXTBYTE << 16;
				z->state->mode = IM_DICT2;

			case IM_DICT2:
				IM_NEEDBYTE
				z->state->sub.check.need += (uLong)IM_NEXTBYTE << 8;
				z->state->mode = IM_DICT1;

			case IM_DICT1:
				IM_NEEDBYTE;
				r;
				z->state->sub.check.need += (uLong)IM_NEXTBYTE;
				z->adler = z->state->sub.check.need;
				z->state->mode = IM_DICT0;
				return Z_NEED_DICT;

			case IM_DICT0:
				z->state->mode = IM_BAD;
				z->msg = (char *)"need dictionary";
				z->state->sub.marker = 0;       // can try inflateSync
				return Z_STREAM_ERROR;

			case IM_BLOCKS:
				r = inflate_blocks(z->state->blocks, z, r);

				if (r == Z_DATA_ERROR)
				{
					z->state->mode = IM_BAD;
					z->state->sub.marker = 0;       // can try inflateSync
					break;
				}

				if (r == Z_OK)
					r = f;

				if (r != Z_STREAM_END)
					return r;

				r = f;
				inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);

				if (z->state->nowrap)
				{
					z->state->mode = IM_DONE;
					break;
				}

				z->state->mode = IM_CHECK4;

			case IM_CHECK4:
				IM_NEEDBYTE
				z->state->sub.check.need = (uLong)IM_NEXTBYTE << 24;
				z->state->mode = IM_CHECK3;

			case IM_CHECK3:
				IM_NEEDBYTE
				z->state->sub.check.need += (uLong)IM_NEXTBYTE << 16;
				z->state->mode = IM_CHECK2;

			case IM_CHECK2:
				IM_NEEDBYTE
				z->state->sub.check.need += (uLong)IM_NEXTBYTE << 8;
				z->state->mode = IM_CHECK1;

			case IM_CHECK1:
				IM_NEEDBYTE
				z->state->sub.check.need += (uLong)IM_NEXTBYTE;

				if (z->state->sub.check.was != z->state->sub.check.need)
				{
					z->state->mode = IM_BAD;
					z->msg = (char *)"incorrect data check";
					z->state->sub.marker = 5;       // can't try inflateSync
					break;
				}

				LuTracev((stderr, "inflate: zlib check ok\n"));
				z->state->mode = IM_DONE;

			case IM_DONE:
				return Z_STREAM_END;

			case IM_BAD:
				return Z_DATA_ERROR;

			default:
				return Z_STREAM_ERROR;
		}
}





// unzip.c -- IO on .zip files using zlib
// Version 0.15 beta, Mar 19th, 1998,
// Read unzip.h for more info




#define UNZ_BUFSIZE (16384)
#define UNZ_MAXFILENAMEINZIP (256)
#define SIZECENTRALDIRITEM (0x2e)
#define SIZEZIPLOCALHEADER (0x1e)




const char unz_copyright[] = " unzip 0.15 Copyright 1998 Gilles Vollant ";

// unz_file_info_interntal contain internal info about a file in zipfile
typedef struct unz_file_info_internal_s
{
	uLong offset_curfile;// relative offset of local header 4 bytes
} unz_file_info_internal;


typedef struct
{
	bool is_handle; // either a handle or memory
	bool canseek;
	// for handles:
	HANDLE h;
	bool herr;
	unsigned long initial_offset;
	bool mustclosehandle;
	// for memory:
	void *buf;
	unsigned int len, pos; // if it's a memory block
} LUFILE;


LUFILE *lufopen(void *z, unsigned int len, DWORD flags, ZRESULT *err)
{
	if (flags != ZIP_HANDLE && flags != ZIP_FILENAME && flags != ZIP_MEMORY)
	{
		*err = ZR_ARGS;
		return NULL;
	}

	//
	HANDLE h = 0;
	bool canseek = false;
	*err = ZR_OK;
	bool mustclosehandle = false;

	if (flags == ZIP_HANDLE || flags == ZIP_FILENAME)
	{
		if (flags == ZIP_HANDLE)
		{
			HANDLE hf = z;
			h = hf;
			mustclosehandle = false;
#ifdef DuplicateHandle
			BOOL res = DuplicateHandle(GetCurrentProcess(), hf, GetCurrentProcess(), &h, 0, FALSE, DUPLICATE_SAME_ACCESS);

			if (!res) mustclosehandle = true;

#endif
		}

		else
		{
			h = CreateFile((const TCHAR *)z, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

			if (h == INVALID_HANDLE_VALUE)
			{
				*err = ZR_NOFILE;
				return NULL;
			}

			mustclosehandle = true;
		}

		// test if we can seek on it. We can't use GetFileType(h)==FILE_TYPE_DISK since it's not on CE.
		DWORD res = SetFilePointer(h, 0, 0, FILE_CURRENT);
		canseek = (res != 0xFFFFFFFF);
	}

	LUFILE *lf = new LUFILE;

	if (flags == ZIP_HANDLE || flags == ZIP_FILENAME)
	{
		lf->is_handle = true;
		lf->mustclosehandle = mustclosehandle;
		lf->canseek = canseek;
		lf->h = h;
		lf->herr = false;
		lf->initial_offset = 0;

		if (canseek) lf->initial_offset = SetFilePointer(h, 0, NULL, FILE_CURRENT);
	}

	else
	{
		lf->is_handle = false;
		lf->canseek = true;
		lf->mustclosehandle = false;
		lf->buf = z;
		lf->len = len;
		lf->pos = 0;
		lf->initial_offset = 0;
	}

	*err = ZR_OK;
	return lf;
}


int lufclose(LUFILE *stream)
{
	if (stream == NULL) return EOF;

	if (stream->mustclosehandle) CloseHandle(stream->h);

	delete stream;
	return 0;
}

int luferror(LUFILE *stream)
{
	if (stream->is_handle && stream->herr) return 1;

	else return 0;
}

long int luftell(LUFILE *stream)
{
	if (stream->is_handle && stream->canseek) return SetFilePointer(stream->h, 0, NULL, FILE_CURRENT) - stream->initial_offset;

	else if (stream->is_handle) return 0;

	else return stream->pos;
}

int lufseek(LUFILE *stream, long offset, int whence)
{
	if (stream->is_handle && stream->canseek)
	{
		if (whence == SEEK_SET) SetFilePointer(stream->h, stream->initial_offset + offset, 0, FILE_BEGIN);

		else if (whence == SEEK_CUR) SetFilePointer(stream->h, offset, NULL, FILE_CURRENT);

		else if (whence == SEEK_END) SetFilePointer(stream->h, offset, NULL, FILE_END);

		else return 19; // EINVAL

		return 0;
	}

	else if (stream->is_handle) return 29; // ESPIPE

	else
	{
		if (whence == SEEK_SET) stream->pos = offset;

		else if (whence == SEEK_CUR) stream->pos += offset;

		else if (whence == SEEK_END) stream->pos = stream->len + offset;

		return 0;
	}
}


size_t lufread(void *ptr, size_t size, size_t n, LUFILE *stream)
{
	unsigned int toread = (unsigned int)(size * n);

	if (stream->is_handle)
	{
		DWORD red;
		BOOL res = ReadFile(stream->h, ptr, toread, &red, NULL);

		if (!res) stream->herr = true;

		return red / size;
	}

	if (stream->pos + toread > stream->len) toread = stream->len - stream->pos;

	memcpy(ptr, (char *)stream->buf + stream->pos, toread);
	DWORD red = toread;
	stream->pos += red;
	return red / size;
}




// file_in_zip_read_info_s contain internal information about a file in zipfile,
//  when reading and decompress it
typedef struct
{
	char  *read_buffer;         // internal buffer for compressed data
	z_stream stream;            // zLib stream structure for inflate

	uLong pos_in_zipfile;       // position in byte on the zipfile, for fseek
	uLong stream_initialised;   // flag set if stream structure is initialised

	uLong offset_local_extrafield;// offset of the local extra field
	uInt  size_local_extrafield;// size of the local extra field
	uLong pos_local_extrafield;   // position in the local extra field in read

	uLong crc32;                // crc32 of all data uncompressed
	uLong crc32_wait;           // crc32 we must obtain after decompress all
	uLong rest_read_compressed; // number of byte to be decompressed
	uLong rest_read_uncompressed;//number of byte to be obtained after decomp
	LUFILE *file;                 // io structore of the zipfile
	uLong compression_method;   // compression method (0==store)
	uLong byte_before_the_zipfile;// byte before the zipfile, (>0 for sfx)
	bool encrypted;               // is it encrypted?
	unsigned long keys[3];        // decryption keys, initialized by unzOpenCurrentFile
	int encheadleft;              // the first call(s) to unzReadCurrentFile will read this many encryption-header bytes first
	char crcenctest;              // if encrypted, we'll check the encryption buffer against this
} file_in_zip_read_info_s;


// unz_s contain internal information about the zipfile
typedef struct
{
	LUFILE *file;               // io structore of the zipfile
	unz_global_info gi;         // public global information
	uLong byte_before_the_zipfile;// byte before the zipfile, (>0 for sfx)
	uLong num_file;             // number of the current file in the zipfile
	uLong pos_in_central_dir;   // pos of the current file in the central dir
	uLong current_file_ok;      // flag about the usability of the current file
	uLong central_pos;          // position of the beginning of the central dir

	uLong size_central_dir;     // size of the central directory
	uLong offset_central_dir;   // offset of start of central directory with respect to the starting disk number

	unz_file_info cur_file_info; // public info about the current file in zip
	unz_file_info_internal cur_file_info_internal; // private info about it
	file_in_zip_read_info_s *pfile_in_zip_read; // structure about the current file if we are decompressing it
} unz_s, *unzFile;


int unzStringFileNameCompare (const char *fileName1, const char *fileName2, int iCaseSensitivity);
//   Compare two filename (fileName1,fileName2).

z_off_t unztell (unzFile file);
//  Give the current position in uncompressed data

int unzeof (unzFile file);
//  return 1 if the end of file was reached, 0 elsewhere

int unzGetLocalExtrafield (unzFile file, voidp buf, unsigned len);
//  Read extra field from the current file (opened by unzOpenCurrentFile)
//  This is the local-header version of the extra field (sometimes, there is
//    more info in the local-header version than in the central-header)
//
//  if buf==NULL, it return the size of the local extra field
//
//  if buf!=NULL, len is the size of the buffer, the extra header is copied in
//  buf.
//  the return value is the number of bytes copied in buf, or (if <0)
//  the error code



// ===========================================================================
//   Read a byte from a gz_stream; update next_in and avail_in. Return EOF
// for end of file.
// IN assertion: the stream s has been sucessfully opened for reading.

int unzlocal_getByte(LUFILE *fin, int *pi)
{
	unsigned char c;
	int err = (int)lufread(&c, 1, 1, fin);

	if (err == 1)
	{
		*pi = (int)c;
		return UNZ_OK;
	}

	else
	{
		if (luferror(fin)) return UNZ_ERRNO;

		else return UNZ_EOF;
	}
}


// ===========================================================================
// Reads a long in LSB order from the given gz_stream. Sets
int unzlocal_getShort (LUFILE *fin, uLong *pX)
{
	uLong x ;
	int i;
	int err;

	err = unzlocal_getByte(fin, &i);
	x = (uLong)i;

	if (err == UNZ_OK)
		err = unzlocal_getByte(fin, &i);

	x += ((uLong)i) << 8;

	if (err == UNZ_OK)
		*pX = x;

	else
		*pX = 0;

	return err;
}

int unzlocal_getLong (LUFILE *fin, uLong *pX)
{
	uLong x ;
	int i;
	int err;

	err = unzlocal_getByte(fin, &i);
	x = (uLong)i;

	if (err == UNZ_OK)
		err = unzlocal_getByte(fin, &i);

	x += ((uLong)i) << 8;

	if (err == UNZ_OK)
		err = unzlocal_getByte(fin, &i);

	x += ((uLong)i) << 16;

	if (err == UNZ_OK)
		err = unzlocal_getByte(fin, &i);

	x += ((uLong)i) << 24;

	if (err == UNZ_OK)
		*pX = x;

	else
		*pX = 0;

	return err;
}


// My own strcmpi / strcasecmp
int strcmpcasenosensitive_internal (const char *fileName1, const char *fileName2)
{
	for (;;)
	{
		char c1 = *(fileName1++);
		char c2 = *(fileName2++);

		if ((c1 >= 'a') && (c1 <= 'z'))
			c1 -= (char)0x20;

		if ((c2 >= 'a') && (c2 <= 'z'))
			c2 -= (char)0x20;

		if (c1 == '\0')
			return ((c2 == '\0') ? 0 : -1);

		if (c2 == '\0')
			return 1;

		if (c1 < c2)
			return -1;

		if (c1 > c2)
			return 1;
	}
}




//
// Compare two filename (fileName1,fileName2).
// If iCaseSenisivity = 1, comparision is case sensitivity (like strcmp)
// If iCaseSenisivity = 2, comparision is not case sensitivity (like strcmpi or strcasecmp)
//
int unzStringFileNameCompare (const char *fileName1, const char *fileName2, int iCaseSensitivity)
{
	if (iCaseSensitivity == 1) return strcmp(fileName1, fileName2);

	else return strcmpcasenosensitive_internal(fileName1, fileName2);
}

#define BUFREADCOMMENT (0x400)


//  Locate the Central directory of a zipfile (at the end, just before
// the global comment). Lu bugfix 2005.07.26 - returns 0xFFFFFFFF if not found,
// rather than 0, since 0 is a valid central-dir-location for an empty zipfile.
uLong unzlocal_SearchCentralDir(LUFILE *fin)
{
	if (lufseek(fin, 0, SEEK_END) != 0) return 0xFFFFFFFF;

	uLong uSizeFile = luftell(fin);

	uLong uMaxBack = 0xffff; // maximum size of global comment

	if (uMaxBack > uSizeFile) uMaxBack = uSizeFile;

	unsigned char *buf = (unsigned char *)zmalloc(BUFREADCOMMENT + 4);

	if (buf == NULL) return 0xFFFFFFFF;

	uLong uPosFound = 0xFFFFFFFF;

	uLong uBackRead = 4;

	while (uBackRead < uMaxBack)
	{
		uLong uReadSize, uReadPos ;
		int i;

		if (uBackRead + BUFREADCOMMENT > uMaxBack) uBackRead = uMaxBack;

		else uBackRead += BUFREADCOMMENT;

		uReadPos = uSizeFile - uBackRead ;
		uReadSize = ((BUFREADCOMMENT + 4) < (uSizeFile - uReadPos)) ? (BUFREADCOMMENT + 4) : (uSizeFile - uReadPos);

		if (lufseek(fin, uReadPos, SEEK_SET) != 0) break;

		if (lufread(buf, (uInt)uReadSize, 1, fin) != 1) break;

		for (i = (int)uReadSize - 3; (i--) >= 0;)
		{
			if (((*(buf + i)) == 0x50) && ((*(buf + i + 1)) == 0x4b) && ((*(buf + i + 2)) == 0x05) && ((*(buf + i + 3)) == 0x06))
			{
				uPosFound = uReadPos + i;
				break;
			}
		}

		if (uPosFound != 0) break;
	}

	if (buf) zfree(buf);

	return uPosFound;
}


int unzGoToFirstFile (unzFile file);
int unzCloseCurrentFile (unzFile file);

// Open a Zip file.
// If the zipfile cannot be opened (file don't exist or in not valid), return NULL.
// Otherwise, the return value is a unzFile Handle, usable with other unzip functions
unzFile unzOpenInternal(LUFILE *fin)
{
	if (fin == NULL) return NULL;

	if (unz_copyright[0] != ' ')
	{
		lufclose(fin);
		return NULL;
	}

	int err = UNZ_OK;
	unz_s us;
	uLong central_pos, uL;
	central_pos = unzlocal_SearchCentralDir(fin);

	if (central_pos == 0xFFFFFFFF) err = UNZ_ERRNO;

	if (lufseek(fin, central_pos, SEEK_SET) != 0) err = UNZ_ERRNO;

	// the signature, already checked
	if (unzlocal_getLong(fin, &uL) != UNZ_OK) err = UNZ_ERRNO;

	// number of this disk
	uLong number_disk;          // number of the current dist, used for spanning ZIP, unsupported, always 0

	if (unzlocal_getShort(fin, &number_disk) != UNZ_OK) err = UNZ_ERRNO;

	// number of the disk with the start of the central directory
	uLong number_disk_with_CD;  // number the the disk with central dir, used for spaning ZIP, unsupported, always 0

	if (unzlocal_getShort(fin, &number_disk_with_CD) != UNZ_OK) err = UNZ_ERRNO;

	// total number of entries in the central dir on this disk
	if (unzlocal_getShort(fin, &us.gi.number_entry) != UNZ_OK) err = UNZ_ERRNO;

	// total number of entries in the central dir
	uLong number_entry_CD;      // total number of entries in the central dir (same than number_entry on nospan)

	if (unzlocal_getShort(fin, &number_entry_CD) != UNZ_OK) err = UNZ_ERRNO;

	if ((number_entry_CD != us.gi.number_entry) || (number_disk_with_CD != 0) || (number_disk != 0)) err = UNZ_BADZIPFILE;

	// size of the central directory
	if (unzlocal_getLong(fin, &us.size_central_dir) != UNZ_OK) err = UNZ_ERRNO;

	// offset of start of central directory with respect to the starting disk number
	if (unzlocal_getLong(fin, &us.offset_central_dir) != UNZ_OK) err = UNZ_ERRNO;

	// zipfile comment length
	if (unzlocal_getShort(fin, &us.gi.size_comment) != UNZ_OK) err = UNZ_ERRNO;

	if ((central_pos + fin->initial_offset < us.offset_central_dir + us.size_central_dir) && (err == UNZ_OK)) err = UNZ_BADZIPFILE;

	if (err != UNZ_OK)
	{
		lufclose(fin);
		return NULL;
	}

	us.file = fin;
	us.byte_before_the_zipfile = central_pos + fin->initial_offset - (us.offset_central_dir + us.size_central_dir);
	us.central_pos = central_pos;
	us.pfile_in_zip_read = NULL;
	fin->initial_offset = 0; // since the zipfile itself is expected to handle this

	unz_s *s = (unz_s *)zmalloc(sizeof(unz_s));
	*s = us;
	unzGoToFirstFile((unzFile)s);
	return (unzFile)s;
}



//  Close a ZipFile opened with unzipOpen.
//  If there is files inside the .Zip opened with unzipOpenCurrentFile (see later),
//    these files MUST be closed with unzipCloseCurrentFile before call unzipClose.
//  return UNZ_OK if there is no problem.
int unzClose (unzFile file)
{
	unz_s *s;

	if (file == NULL)
		return UNZ_PARAMERROR;

	s = (unz_s *)file;

	if (s->pfile_in_zip_read != NULL)
		unzCloseCurrentFile(file);

	lufclose(s->file);

	if (s) zfree(s); // unused s=0;

	return UNZ_OK;
}


//  Write info about the ZipFile in the *pglobal_info structure.
//  No preparation of the structure is needed
//  return UNZ_OK if there is no problem.
int unzGetGlobalInfo (unzFile file, unz_global_info *pglobal_info)
{
	unz_s *s;

	if (file == NULL)
		return UNZ_PARAMERROR;

	s = (unz_s *)file;
	*pglobal_info = s->gi;
	return UNZ_OK;
}


//   Translate date/time from Dos format to tm_unz (readable more easilty)
void unzlocal_DosDateToTmuDate (uLong ulDosDate, tm_unz *ptm)
{
	uLong uDate;
	uDate = (uLong)(ulDosDate >> 16);
	ptm->tm_mday = (uInt)(uDate & 0x1f) ;
	ptm->tm_mon =  (uInt)((((uDate) & 0x1E0) / 0x20) - 1) ;
	ptm->tm_year = (uInt)(((uDate & 0x0FE00) / 0x0200) + 1980) ;

	ptm->tm_hour = (uInt) ((ulDosDate & 0xF800) / 0x800);
	ptm->tm_min =  (uInt) ((ulDosDate & 0x7E0) / 0x20) ;
	ptm->tm_sec =  (uInt) (2 * (ulDosDate & 0x1f)) ;
}

//  Get Info about the current file in the zipfile, with internal only info
int unzlocal_GetCurrentFileInfoInternal (unzFile file,
    unz_file_info *pfile_info,
    unz_file_info_internal
    *pfile_info_internal,
    char *szFileName,
    uLong fileNameBufferSize,
    void *extraField,
    uLong extraFieldBufferSize,
    char *szComment,
    uLong commentBufferSize);

int unzlocal_GetCurrentFileInfoInternal (unzFile file, unz_file_info *pfile_info,
    unz_file_info_internal *pfile_info_internal, char *szFileName,
    uLong fileNameBufferSize, void *extraField, uLong extraFieldBufferSize,
    char *szComment, uLong commentBufferSize)
{
	unz_s *s;
	unz_file_info file_info;
	unz_file_info_internal file_info_internal;
	int err = UNZ_OK;
	uLong uMagic;
	long lSeek = 0;

	if (file == NULL)
		return UNZ_PARAMERROR;

	s = (unz_s *)file;

	if (lufseek(s->file, s->pos_in_central_dir + s->byte_before_the_zipfile, SEEK_SET) != 0)
		err = UNZ_ERRNO;


	// we check the magic
	if (err == UNZ_OK)
		if (unzlocal_getLong(s->file, &uMagic) != UNZ_OK)
			err = UNZ_ERRNO;

		else if (uMagic != 0x02014b50)
			err = UNZ_BADZIPFILE;

	if (unzlocal_getShort(s->file, &file_info.version) != UNZ_OK)
		err = UNZ_ERRNO;

	if (unzlocal_getShort(s->file, &file_info.version_needed) != UNZ_OK)
		err = UNZ_ERRNO;

	if (unzlocal_getShort(s->file, &file_info.flag) != UNZ_OK)
		err = UNZ_ERRNO;

	if (unzlocal_getShort(s->file, &file_info.compression_method) != UNZ_OK)
		err = UNZ_ERRNO;

	if (unzlocal_getLong(s->file, &file_info.dosDate) != UNZ_OK)
		err = UNZ_ERRNO;

	unzlocal_DosDateToTmuDate(file_info.dosDate, &file_info.tmu_date);

	if (unzlocal_getLong(s->file, &file_info.crc) != UNZ_OK)
		err = UNZ_ERRNO;

	if (unzlocal_getLong(s->file, &file_info.compressed_size) != UNZ_OK)
		err = UNZ_ERRNO;

	if (unzlocal_getLong(s->file, &file_info.uncompressed_size) != UNZ_OK)
		err = UNZ_ERRNO;

	if (unzlocal_getShort(s->file, &file_info.size_filename) != UNZ_OK)
		err = UNZ_ERRNO;

	if (unzlocal_getShort(s->file, &file_info.size_file_extra) != UNZ_OK)
		err = UNZ_ERRNO;

	if (unzlocal_getShort(s->file, &file_info.size_file_comment) != UNZ_OK)
		err = UNZ_ERRNO;

	if (unzlocal_getShort(s->file, &file_info.disk_num_start) != UNZ_OK)
		err = UNZ_ERRNO;

	if (unzlocal_getShort(s->file, &file_info.internal_fa) != UNZ_OK)
		err = UNZ_ERRNO;

	if (unzlocal_getLong(s->file, &file_info.external_fa) != UNZ_OK)
		err = UNZ_ERRNO;

	if (unzlocal_getLong(s->file, &file_info_internal.offset_curfile) != UNZ_OK)
		err = UNZ_ERRNO;

	lSeek += file_info.size_filename;

	if ((err == UNZ_OK) && (szFileName != NULL))
	{
		uLong uSizeRead ;

		if (file_info.size_filename < fileNameBufferSize)
		{
			*(szFileName + file_info.size_filename) = '\0';
			uSizeRead = file_info.size_filename;
		}

		else
			uSizeRead = fileNameBufferSize;

		if ((file_info.size_filename > 0) && (fileNameBufferSize > 0))
			if (lufread(szFileName, (uInt)uSizeRead, 1, s->file) != 1)
				err = UNZ_ERRNO;

		lSeek -= uSizeRead;
	}


	if ((err == UNZ_OK) && (extraField != NULL))
	{
		uLong uSizeRead ;

		if (file_info.size_file_extra < extraFieldBufferSize)
			uSizeRead = file_info.size_file_extra;

		else
			uSizeRead = extraFieldBufferSize;

		if (lSeek != 0)
			if (lufseek(s->file, lSeek, SEEK_CUR) == 0)
				lSeek = 0;

			else
				err = UNZ_ERRNO;

		if ((file_info.size_file_extra > 0) && (extraFieldBufferSize > 0))
			if (lufread(extraField, (uInt)uSizeRead, 1, s->file) != 1)
				err = UNZ_ERRNO;

		lSeek += file_info.size_file_extra - uSizeRead;
	}

	else
		lSeek += file_info.size_file_extra;


	if ((err == UNZ_OK) && (szComment != NULL))
	{
		uLong uSizeRead ;

		if (file_info.size_file_comment < commentBufferSize)
		{
			*(szComment + file_info.size_file_comment) = '\0';
			uSizeRead = file_info.size_file_comment;
		}

		else
			uSizeRead = commentBufferSize;

		if (lSeek != 0)
			if (lufseek(s->file, lSeek, SEEK_CUR) == 0)
			{} // unused lSeek=0;
			else
				err = UNZ_ERRNO;

		if ((file_info.size_file_comment > 0) && (commentBufferSize > 0))
			if (lufread(szComment, (uInt)uSizeRead, 1, s->file) != 1)
				err = UNZ_ERRNO;

		//unused lSeek+=file_info.size_file_comment - uSizeRead;
	}

	else {} //unused lSeek+=file_info.size_file_comment;

	if ((err == UNZ_OK) && (pfile_info != NULL))
		*pfile_info = file_info;

	if ((err == UNZ_OK) && (pfile_info_internal != NULL))
		*pfile_info_internal = file_info_internal;

	return err;
}



//  Write info about the ZipFile in the *pglobal_info structure.
//  No preparation of the structure is needed
//  return UNZ_OK if there is no problem.
int unzGetCurrentFileInfo (unzFile file, unz_file_info *pfile_info,
    char *szFileName, uLong fileNameBufferSize, void *extraField, uLong extraFieldBufferSize,
    char *szComment, uLong commentBufferSize)
{
	return unzlocal_GetCurrentFileInfoInternal(file, pfile_info, NULL, szFileName, fileNameBufferSize,
	        extraField, extraFieldBufferSize, szComment, commentBufferSize);
}


//  Set the current file of the zipfile to the first file.
//  return UNZ_OK if there is no problem
int unzGoToFirstFile (unzFile file)
{
	int err;
	unz_s *s;

	if (file == NULL) return UNZ_PARAMERROR;

	s = (unz_s *)file;
	s->pos_in_central_dir = s->offset_central_dir;
	s->num_file = 0;
	err = unzlocal_GetCurrentFileInfoInternal(file, &s->cur_file_info,
	        &s->cur_file_info_internal,
	        NULL, 0, NULL, 0, NULL, 0);
	s->current_file_ok = (err == UNZ_OK);
	return err;
}


//  Set the current file of the zipfile to the next file.
//  return UNZ_OK if there is no problem
//  return UNZ_END_OF_LIST_OF_FILE if the actual file was the latest.
int unzGoToNextFile (unzFile file)
{
	unz_s *s;
	int err;

	if (file == NULL)
		return UNZ_PARAMERROR;

	s = (unz_s *)file;

	if (!s->current_file_ok)
		return UNZ_END_OF_LIST_OF_FILE;

	if (s->num_file + 1 == s->gi.number_entry)
		return UNZ_END_OF_LIST_OF_FILE;

	s->pos_in_central_dir += SIZECENTRALDIRITEM + s->cur_file_info.size_filename +
	    s->cur_file_info.size_file_extra + s->cur_file_info.size_file_comment ;
	s->num_file++;
	err = unzlocal_GetCurrentFileInfoInternal(file, &s->cur_file_info,
	        &s->cur_file_info_internal,
	        NULL, 0, NULL, 0, NULL, 0);
	s->current_file_ok = (err == UNZ_OK);
	return err;
}


//  Try locate the file szFileName in the zipfile.
//  For the iCaseSensitivity signification, see unzStringFileNameCompare
//  return value :
//  UNZ_OK if the file is found. It becomes the current file.
//  UNZ_END_OF_LIST_OF_FILE if the file is not found
int unzLocateFile (unzFile file, const char *szFileName, int iCaseSensitivity)
{
	unz_s *s;
	int err;


	uLong num_fileSaved;
	uLong pos_in_central_dirSaved;


	if (file == NULL)
		return UNZ_PARAMERROR;

	if (strlen(szFileName) >= UNZ_MAXFILENAMEINZIP)
		return UNZ_PARAMERROR;

	s = (unz_s *)file;

	if (!s->current_file_ok)
		return UNZ_END_OF_LIST_OF_FILE;

	num_fileSaved = s->num_file;
	pos_in_central_dirSaved = s->pos_in_central_dir;

	err = unzGoToFirstFile(file);

	while (err == UNZ_OK)
	{
		char szCurrentFileName[UNZ_MAXFILENAMEINZIP + 1];
		unzGetCurrentFileInfo(file, NULL,
		    szCurrentFileName, sizeof(szCurrentFileName) - 1,
		    NULL, 0, NULL, 0);

		if (unzStringFileNameCompare(szCurrentFileName, szFileName, iCaseSensitivity) == 0)
			return UNZ_OK;

		err = unzGoToNextFile(file);
	}

	s->num_file = num_fileSaved ;
	s->pos_in_central_dir = pos_in_central_dirSaved ;
	return err;
}


//  Read the local header of the current zipfile
//  Check the coherency of the local header and info in the end of central
//        directory about this file
//  store in *piSizeVar the size of extra info in local header
//        (filename and size of extra field data)
int unzlocal_CheckCurrentFileCoherencyHeader (unz_s *s, uInt *piSizeVar,
    uLong *poffset_local_extrafield, uInt  *psize_local_extrafield)
{
	uLong uMagic, uData, uFlags;
	uLong size_filename;
	uLong size_extra_field;
	int err = UNZ_OK;

	*piSizeVar = 0;
	*poffset_local_extrafield = 0;
	*psize_local_extrafield = 0;

	if (lufseek(s->file, s->cur_file_info_internal.offset_curfile + s->byte_before_the_zipfile, SEEK_SET) != 0)
		return UNZ_ERRNO;


	if (err == UNZ_OK)
		if (unzlocal_getLong(s->file, &uMagic) != UNZ_OK)
			err = UNZ_ERRNO;

		else if (uMagic != 0x04034b50)
			err = UNZ_BADZIPFILE;

	if (unzlocal_getShort(s->file, &uData) != UNZ_OK)
		err = UNZ_ERRNO;

	//  else if ((err==UNZ_OK) && (uData!=s->cur_file_info.wVersion))
	//    err=UNZ_BADZIPFILE;
	if (unzlocal_getShort(s->file, &uFlags) != UNZ_OK)
		err = UNZ_ERRNO;

	if (unzlocal_getShort(s->file, &uData) != UNZ_OK)
		err = UNZ_ERRNO;

	else if ((err == UNZ_OK) && (uData != s->cur_file_info.compression_method))
		err = UNZ_BADZIPFILE;

	if ((err == UNZ_OK) && (s->cur_file_info.compression_method != 0) &&
	    (s->cur_file_info.compression_method != Z_DEFLATED))
		err = UNZ_BADZIPFILE;

	if (unzlocal_getLong(s->file, &uData) != UNZ_OK) // date/time
		err = UNZ_ERRNO;

	if (unzlocal_getLong(s->file, &uData) != UNZ_OK) // crc
		err = UNZ_ERRNO;

	else if ((err == UNZ_OK) && (uData != s->cur_file_info.crc) &&
	    ((uFlags & 8) == 0))
		err = UNZ_BADZIPFILE;

	if (unzlocal_getLong(s->file, &uData) != UNZ_OK) // size compr
		err = UNZ_ERRNO;

	else if ((err == UNZ_OK) && (uData != s->cur_file_info.compressed_size) &&
	    ((uFlags & 8) == 0))
		err = UNZ_BADZIPFILE;

	if (unzlocal_getLong(s->file, &uData) != UNZ_OK) // size uncompr
		err = UNZ_ERRNO;

	else if ((err == UNZ_OK) && (uData != s->cur_file_info.uncompressed_size) &&
	    ((uFlags & 8) == 0))
		err = UNZ_BADZIPFILE;


	if (unzlocal_getShort(s->file, &size_filename) != UNZ_OK)
		err = UNZ_ERRNO;

	else if ((err == UNZ_OK) && (size_filename != s->cur_file_info.size_filename))
		err = UNZ_BADZIPFILE;

	*piSizeVar += (uInt)size_filename;

	if (unzlocal_getShort(s->file, &size_extra_field) != UNZ_OK)
		err = UNZ_ERRNO;

	*poffset_local_extrafield = s->cur_file_info_internal.offset_curfile +
	    SIZEZIPLOCALHEADER + size_filename;
	*psize_local_extrafield = (uInt)size_extra_field;

	*piSizeVar += (uInt)size_extra_field;

	return err;
}





//  Open for reading data the current file in the zipfile.
//  If there is no error and the file is opened, the return value is UNZ_OK.
int unzOpenCurrentFile (unzFile file, const char *password)
{
	int err;
	int Store;
	uInt iSizeVar;
	unz_s *s;
	file_in_zip_read_info_s *pfile_in_zip_read_info;
	uLong offset_local_extrafield;  // offset of the local extra field
	uInt  size_local_extrafield;    // size of the local extra field

	if (file == NULL)
		return UNZ_PARAMERROR;

	s = (unz_s *)file;

	if (!s->current_file_ok)
		return UNZ_PARAMERROR;

	if (s->pfile_in_zip_read != NULL)
		unzCloseCurrentFile(file);

	if (unzlocal_CheckCurrentFileCoherencyHeader(s, &iSizeVar,
	        &offset_local_extrafield, &size_local_extrafield) != UNZ_OK)
		return UNZ_BADZIPFILE;

	pfile_in_zip_read_info = (file_in_zip_read_info_s *)zmalloc(sizeof(file_in_zip_read_info_s));

	if (pfile_in_zip_read_info == NULL)
		return UNZ_INTERNALERROR;

	pfile_in_zip_read_info->read_buffer = (char *)zmalloc(UNZ_BUFSIZE);
	pfile_in_zip_read_info->offset_local_extrafield = offset_local_extrafield;
	pfile_in_zip_read_info->size_local_extrafield = size_local_extrafield;
	pfile_in_zip_read_info->pos_local_extrafield = 0;

	if (pfile_in_zip_read_info->read_buffer == NULL)
	{
		if (pfile_in_zip_read_info != 0) zfree(pfile_in_zip_read_info); //unused pfile_in_zip_read_info=0;

		return UNZ_INTERNALERROR;
	}

	pfile_in_zip_read_info->stream_initialised = 0;

	if ((s->cur_file_info.compression_method != 0) && (s->cur_file_info.compression_method != Z_DEFLATED))
	{
		// unused err=UNZ_BADZIPFILE;
	}

	Store = s->cur_file_info.compression_method == 0;

	pfile_in_zip_read_info->crc32_wait = s->cur_file_info.crc;
	pfile_in_zip_read_info->crc32 = 0;
	pfile_in_zip_read_info->compression_method = s->cur_file_info.compression_method;
	pfile_in_zip_read_info->file = s->file;
	pfile_in_zip_read_info->byte_before_the_zipfile = s->byte_before_the_zipfile;

	pfile_in_zip_read_info->stream.total_out = 0;

	if (!Store)
	{
		pfile_in_zip_read_info->stream.zalloc = (alloc_func)0;
		pfile_in_zip_read_info->stream.zfree = (free_func)0;
		pfile_in_zip_read_info->stream.opaque = (voidpf)0;

		err = inflateInit2(&pfile_in_zip_read_info->stream);

		if (err == Z_OK)
			pfile_in_zip_read_info->stream_initialised = 1;

		// windowBits is passed < 0 to tell that there is no zlib header.
		// Note that in this case inflate *requires* an extra "dummy" byte
		// after the compressed stream in order to complete decompression and
		// return Z_STREAM_END.
		// In unzip, i don't wait absolutely Z_STREAM_END because I known the
		// size of both compressed and uncompressed data
	}

	pfile_in_zip_read_info->rest_read_compressed = s->cur_file_info.compressed_size ;
	pfile_in_zip_read_info->rest_read_uncompressed = s->cur_file_info.uncompressed_size ;
	pfile_in_zip_read_info->encrypted = (s->cur_file_info.flag & 1) != 0;
	bool extlochead = (s->cur_file_info.flag & 8) != 0;

	if (extlochead) pfile_in_zip_read_info->crcenctest = (char)((s->cur_file_info.dosDate >> 8) & 0xff);

	else pfile_in_zip_read_info->crcenctest = (char)(s->cur_file_info.crc >> 24);

	pfile_in_zip_read_info->encheadleft = (pfile_in_zip_read_info->encrypted ? 12 : 0);
	pfile_in_zip_read_info->keys[0] = 305419896L;
	pfile_in_zip_read_info->keys[1] = 591751049L;
	pfile_in_zip_read_info->keys[2] = 878082192L;

	for (const char *cp = password; cp != 0 && *cp != 0; cp++) Uupdate_keys(pfile_in_zip_read_info->keys, *cp);

	pfile_in_zip_read_info->pos_in_zipfile =
	    s->cur_file_info_internal.offset_curfile + SIZEZIPLOCALHEADER +
	    iSizeVar;

	pfile_in_zip_read_info->stream.avail_in = (uInt)0;

	s->pfile_in_zip_read = pfile_in_zip_read_info;

	return UNZ_OK;
}


//  Read bytes from the current file.
//  buf contain buffer where data must be copied
//  len the size of buf.
//  return the number of byte copied if somes bytes are copied (and also sets *reached_eof)
//  return 0 if the end of file was reached. (and also sets *reached_eof).
//  return <0 with error code if there is an error. (in which case *reached_eof is meaningless)
//    (UNZ_ERRNO for IO error, or zLib error for uncompress error)
int unzReadCurrentFile  (unzFile file, voidp buf, unsigned len, bool *reached_eof)
{
	int err = UNZ_OK;
	uInt iRead = 0;

	if (reached_eof != 0) *reached_eof = false;

	unz_s *s = (unz_s *)file;

	if (s == NULL) return UNZ_PARAMERROR;

	file_in_zip_read_info_s *pfile_in_zip_read_info = s->pfile_in_zip_read;

	if (pfile_in_zip_read_info == NULL) return UNZ_PARAMERROR;

	if ((pfile_in_zip_read_info->read_buffer == NULL)) return UNZ_END_OF_LIST_OF_FILE;

	if (len == 0) return 0;

	pfile_in_zip_read_info->stream.next_out = (Byte *)buf;
	pfile_in_zip_read_info->stream.avail_out = (uInt)len;

	if (len > pfile_in_zip_read_info->rest_read_uncompressed)
	{
		pfile_in_zip_read_info->stream.avail_out = (uInt)pfile_in_zip_read_info->rest_read_uncompressed;
	}

	while (pfile_in_zip_read_info->stream.avail_out > 0)
	{
		if ((pfile_in_zip_read_info->stream.avail_in == 0) && (pfile_in_zip_read_info->rest_read_compressed > 0))
		{
			uInt uReadThis = UNZ_BUFSIZE;

			if (pfile_in_zip_read_info->rest_read_compressed < uReadThis) uReadThis = (uInt)pfile_in_zip_read_info->rest_read_compressed;

			if (uReadThis == 0)
			{
				if (reached_eof != 0) *reached_eof = true;

				return UNZ_EOF;
			}

			if (lufseek(pfile_in_zip_read_info->file, pfile_in_zip_read_info->pos_in_zipfile + pfile_in_zip_read_info->byte_before_the_zipfile, SEEK_SET) != 0) return UNZ_ERRNO;

			if (lufread(pfile_in_zip_read_info->read_buffer, uReadThis, 1, pfile_in_zip_read_info->file) != 1) return UNZ_ERRNO;

			pfile_in_zip_read_info->pos_in_zipfile += uReadThis;
			pfile_in_zip_read_info->rest_read_compressed -= uReadThis;
			pfile_in_zip_read_info->stream.next_in = (Byte *)pfile_in_zip_read_info->read_buffer;
			pfile_in_zip_read_info->stream.avail_in = (uInt)uReadThis;

			//
			if (pfile_in_zip_read_info->encrypted)
			{
				char *buf = (char *)pfile_in_zip_read_info->stream.next_in;

				for (unsigned int i = 0; i < uReadThis; i++) buf[i] = zdecode(pfile_in_zip_read_info->keys, buf[i]);
			}
		}

		unsigned int uDoEncHead = pfile_in_zip_read_info->encheadleft;

		if (uDoEncHead > pfile_in_zip_read_info->stream.avail_in) uDoEncHead = pfile_in_zip_read_info->stream.avail_in;

		if (uDoEncHead > 0)
		{
			char bufcrc = pfile_in_zip_read_info->stream.next_in[uDoEncHead - 1];
			pfile_in_zip_read_info->rest_read_uncompressed -= uDoEncHead;
			pfile_in_zip_read_info->stream.avail_in -= uDoEncHead;
			pfile_in_zip_read_info->stream.next_in += uDoEncHead;
			pfile_in_zip_read_info->encheadleft -= uDoEncHead;

			if (pfile_in_zip_read_info->encheadleft == 0)
			{
				if (bufcrc != pfile_in_zip_read_info->crcenctest) return UNZ_PASSWORD;
			}
		}

		if (pfile_in_zip_read_info->compression_method == 0)
		{
			uInt uDoCopy, i ;

			if (pfile_in_zip_read_info->stream.avail_out < pfile_in_zip_read_info->stream.avail_in)
			{
				uDoCopy = pfile_in_zip_read_info->stream.avail_out ;
			}

			else
			{
				uDoCopy = pfile_in_zip_read_info->stream.avail_in ;
			}

			for (i = 0; i < uDoCopy; i++) *(pfile_in_zip_read_info->stream.next_out + i) = *(pfile_in_zip_read_info->stream.next_in + i);

			pfile_in_zip_read_info->crc32 = ucrc32(pfile_in_zip_read_info->crc32, pfile_in_zip_read_info->stream.next_out, uDoCopy);
			pfile_in_zip_read_info->rest_read_uncompressed -= uDoCopy;
			pfile_in_zip_read_info->stream.avail_in -= uDoCopy;
			pfile_in_zip_read_info->stream.avail_out -= uDoCopy;
			pfile_in_zip_read_info->stream.next_out += uDoCopy;
			pfile_in_zip_read_info->stream.next_in += uDoCopy;
			pfile_in_zip_read_info->stream.total_out += uDoCopy;
			iRead += uDoCopy;

			if (pfile_in_zip_read_info->rest_read_uncompressed == 0)
			{
				if (reached_eof != 0) *reached_eof = true;
			}
		}

		else
		{
			uLong uTotalOutBefore, uTotalOutAfter;
			const Byte *bufBefore;
			uLong uOutThis;
			int flush = Z_SYNC_FLUSH;
			uTotalOutBefore = pfile_in_zip_read_info->stream.total_out;
			bufBefore = pfile_in_zip_read_info->stream.next_out;
			//
			err = inflate(&pfile_in_zip_read_info->stream, flush);
			//
			uTotalOutAfter = pfile_in_zip_read_info->stream.total_out;
			uOutThis = uTotalOutAfter - uTotalOutBefore;
			pfile_in_zip_read_info->crc32 = ucrc32(pfile_in_zip_read_info->crc32, bufBefore, (uInt)(uOutThis));
			pfile_in_zip_read_info->rest_read_uncompressed -= uOutThis;
			iRead += (uInt)(uTotalOutAfter - uTotalOutBefore);

			if (err == Z_STREAM_END || pfile_in_zip_read_info->rest_read_uncompressed == 0)
			{
				if (reached_eof != 0) *reached_eof = true;

				return iRead;
			}

			if (err != Z_OK) break;
		}
	}

	if (err == Z_OK) return iRead;

	return err;
}


//  Give the current position in uncompressed data
z_off_t unztell (unzFile file)
{
	unz_s *s;
	file_in_zip_read_info_s *pfile_in_zip_read_info;

	if (file == NULL)
		return UNZ_PARAMERROR;

	s = (unz_s *)file;
	pfile_in_zip_read_info = s->pfile_in_zip_read;

	if (pfile_in_zip_read_info == NULL)
		return UNZ_PARAMERROR;

	return (z_off_t)pfile_in_zip_read_info->stream.total_out;
}


//  return 1 if the end of file was reached, 0 elsewhere
int unzeof (unzFile file)
{
	unz_s *s;
	file_in_zip_read_info_s *pfile_in_zip_read_info;

	if (file == NULL)
		return UNZ_PARAMERROR;

	s = (unz_s *)file;
	pfile_in_zip_read_info = s->pfile_in_zip_read;

	if (pfile_in_zip_read_info == NULL)
		return UNZ_PARAMERROR;

	if (pfile_in_zip_read_info->rest_read_uncompressed == 0)
		return 1;

	else
		return 0;
}



//  Read extra field from the current file (opened by unzOpenCurrentFile)
//  This is the local-header version of the extra field (sometimes, there is
//    more info in the local-header version than in the central-header)
//  if buf==NULL, it return the size of the local extra field that can be read
//  if buf!=NULL, len is the size of the buffer, the extra header is copied in buf.
//  the return value is the number of bytes copied in buf, or (if <0) the error code
int unzGetLocalExtrafield (unzFile file, voidp buf, unsigned len)
{
	unz_s *s;
	file_in_zip_read_info_s *pfile_in_zip_read_info;
	uInt read_now;
	uLong size_to_read;

	if (file == NULL)
		return UNZ_PARAMERROR;

	s = (unz_s *)file;
	pfile_in_zip_read_info = s->pfile_in_zip_read;

	if (pfile_in_zip_read_info == NULL)
		return UNZ_PARAMERROR;

	size_to_read = (pfile_in_zip_read_info->size_local_extrafield -
	        pfile_in_zip_read_info->pos_local_extrafield);

	if (buf == NULL)
		return (int)size_to_read;

	if (len > size_to_read)
		read_now = (uInt)size_to_read;

	else
		read_now = (uInt)len ;

	if (read_now == 0)
		return 0;

	if (lufseek(pfile_in_zip_read_info->file, pfile_in_zip_read_info->offset_local_extrafield +  pfile_in_zip_read_info->pos_local_extrafield, SEEK_SET) != 0)
		return UNZ_ERRNO;

	if (lufread(buf, (uInt)size_to_read, 1, pfile_in_zip_read_info->file) != 1)
		return UNZ_ERRNO;

	return (int)read_now;
}

//  Close the file in zip opened with unzipOpenCurrentFile
//  Return UNZ_CRCERROR if all the file was read but the CRC is not good
int unzCloseCurrentFile (unzFile file)
{
	int err = UNZ_OK;

	unz_s *s;
	file_in_zip_read_info_s *pfile_in_zip_read_info;

	if (file == NULL)
		return UNZ_PARAMERROR;

	s = (unz_s *)file;
	pfile_in_zip_read_info = s->pfile_in_zip_read;

	if (pfile_in_zip_read_info == NULL)
		return UNZ_PARAMERROR;


	if (pfile_in_zip_read_info->rest_read_uncompressed == 0)
	{
		if (pfile_in_zip_read_info->crc32 != pfile_in_zip_read_info->crc32_wait)
			err = UNZ_CRCERROR;
	}


	if (pfile_in_zip_read_info->read_buffer != 0)
	{
		void *buf = pfile_in_zip_read_info->read_buffer;
		zfree(buf);
		pfile_in_zip_read_info->read_buffer = 0;
	}

	pfile_in_zip_read_info->read_buffer = NULL;

	if (pfile_in_zip_read_info->stream_initialised)
		inflateEnd(&pfile_in_zip_read_info->stream);

	pfile_in_zip_read_info->stream_initialised = 0;

	if (pfile_in_zip_read_info != 0) zfree(pfile_in_zip_read_info); // unused pfile_in_zip_read_info=0;

	s->pfile_in_zip_read = NULL;

	return err;
}


//  Get the global comment string of the ZipFile, in the szComment buffer.
//  uSizeBuf is the size of the szComment buffer.
//  return the number of byte copied or an error code <0
int unzGetGlobalComment (unzFile file, char *szComment, uLong uSizeBuf)
{
	//int err=UNZ_OK;
	unz_s *s;
	uLong uReadThis ;

	if (file == NULL) return UNZ_PARAMERROR;

	s = (unz_s *)file;
	uReadThis = uSizeBuf;

	if (uReadThis > s->gi.size_comment) uReadThis = s->gi.size_comment;

	if (lufseek(s->file, s->central_pos + 22, SEEK_SET) != 0) return UNZ_ERRNO;

	if (uReadThis > 0)
	{
		*szComment = '\0';

		if (lufread(szComment, (uInt)uReadThis, 1, s->file) != 1) return UNZ_ERRNO;
	}

	if ((szComment != NULL) && (uSizeBuf > s->gi.size_comment)) *(szComment + s->gi.size_comment) = '\0';

	return (int)uReadThis;
}





int unzOpenCurrentFile (unzFile file, const char *password);
int unzReadCurrentFile (unzFile file, void *buf, unsigned len);
int unzCloseCurrentFile (unzFile file);


typedef unsigned __int32 lutime_t;       // define it ourselves since we don't include time.h

FILETIME timet2filetime(const lutime_t t)
{
	LONGLONG i = Int32x32To64(t, 10000000) + 116444736000000000;
	FILETIME ft;
	ft.dwLowDateTime = (DWORD) i;
	ft.dwHighDateTime = (DWORD)(i >> 32);
	return ft;
}

FILETIME dosdatetime2filetime(WORD dosdate, WORD dostime)
{
	// date: bits 0-4 are day of month 1-31. Bits 5-8 are month 1..12. Bits 9-15 are year-1980
	// time: bits 0-4 are seconds/2, bits 5-10 are minute 0..59. Bits 11-15 are hour 0..23
	SYSTEMTIME st;
	st.wYear = (WORD)(((dosdate >> 9) & 0x7f) + 1980);
	st.wMonth = (WORD)((dosdate >> 5) & 0xf);
	st.wDay = (WORD)(dosdate & 0x1f);
	st.wHour = (WORD)((dostime >> 11) & 0x1f);
	st.wMinute = (WORD)((dostime >> 5) & 0x3f);
	st.wSecond = (WORD)((dostime & 0x1f) * 2);
	st.wMilliseconds = 0;
	FILETIME ft;
	SystemTimeToFileTime(&st, &ft);
	return ft;
}



class TUnzip {
public:
	TUnzip(const char *pwd) : uf(0), unzbuf(0), currentfile(-1), czei(-1), password(0) {
		if (pwd != 0) {
			password = new char[strlen(pwd) + 1];
			strcpy(password, pwd);
		}
	}
	~TUnzip() {
		if (password != 0) delete[] password;

		password = 0;

		if (unzbuf != 0) delete[] unzbuf;

		unzbuf = 0;
	}

	unzFile uf;
	int currentfile;
	ZIPENTRY cze;
	int czei;
	char *password;
	char *unzbuf;            // lazily created and destroyed, used by Unzip
	TCHAR rootdir[MAX_PATH]; // includes a trailing slash

	ZRESULT Open(void *z, unsigned int len, DWORD flags);
	ZRESULT Get(int index, ZIPENTRY *ze);
	ZRESULT Find(const TCHAR *name, bool ic, int *index, ZIPENTRY *ze);
	ZRESULT Unzip(int index, void *dst, unsigned int len, DWORD flags);
	ZRESULT SetUnzipBaseDir(const TCHAR *dir);
	ZRESULT Close();
};


ZRESULT TUnzip::Open(void *z, unsigned int len, DWORD flags)
{
	if (uf != 0 || currentfile != -1) return ZR_NOTINITED;

	//
#ifdef GetCurrentDirectory
	GetCurrentDirectory(MAX_PATH, rootdir);
#else
	_tcscpy(rootdir, _T("\\"));
#endif
	TCHAR lastchar = rootdir[_tcslen(rootdir) - 1];

	if (lastchar != '\\' && lastchar != '/') _tcscat(rootdir, _T("\\"));

	//
	if (flags == ZIP_HANDLE)
	{
		// test if we can seek on it. We can't use GetFileType(h)==FILE_TYPE_DISK since it's not on CE.
		DWORD res = SetFilePointer(z, 0, 0, FILE_CURRENT);
		bool canseek = (res != 0xFFFFFFFF);

		if (!canseek) return ZR_SEEK;
	}

	ZRESULT e;
	LUFILE *f = lufopen(z, len, flags, &e);

	if (f == NULL) return e;

	uf = unzOpenInternal(f);

	if (uf == 0) return ZR_NOFILE;

	return ZR_OK;
}

ZRESULT TUnzip::SetUnzipBaseDir(const TCHAR *dir)
{
	_tcscpy(rootdir, dir);
	TCHAR lastchar = rootdir[_tcslen(rootdir) - 1];

	if (lastchar != '\\' && lastchar != '/') _tcscat(rootdir, _T("\\"));

	return ZR_OK;
}

ZRESULT TUnzip::Get(int index, ZIPENTRY *ze)
{
	if (index < -1 || index >= (int)uf->gi.number_entry) return ZR_ARGS;

	if (currentfile != -1) unzCloseCurrentFile(uf);

	currentfile = -1;

	if (index == czei && index != -1)
	{
		memcpy(ze, &cze, sizeof(ZIPENTRY));
		return ZR_OK;
	}

	if (index == -1)
	{
		ze->index = uf->gi.number_entry;
		ze->name[0] = 0;
		ze->attr = 0;
		ze->atime.dwLowDateTime = 0;
		ze->atime.dwHighDateTime = 0;
		ze->ctime.dwLowDateTime = 0;
		ze->ctime.dwHighDateTime = 0;
		ze->mtime.dwLowDateTime = 0;
		ze->mtime.dwHighDateTime = 0;
		ze->comp_size = 0;
		ze->unc_size = 0;
		return ZR_OK;
	}

	if (index < (int)uf->num_file) unzGoToFirstFile(uf);

	while ((int)uf->num_file < index) unzGoToNextFile(uf);

	unz_file_info ufi;
	char fn[MAX_PATH];
	unzGetCurrentFileInfo(uf, &ufi, fn, MAX_PATH, NULL, 0, NULL, 0);
	// now get the extra header. We do this ourselves, instead of
	// calling unzOpenCurrentFile &c., to avoid allocating more than necessary.
	unsigned int extralen, iSizeVar;
	unsigned long offset;
	int res = unzlocal_CheckCurrentFileCoherencyHeader(uf, &iSizeVar, &offset, &extralen);

	if (res != UNZ_OK) return ZR_CORRUPT;

	if (lufseek(uf->file, offset, SEEK_SET) != 0) return ZR_READ;

	unsigned char *extra = new unsigned char[extralen];

	if (lufread(extra, 1, (uInt)extralen, uf->file) != extralen)
	{
		delete[] extra;
		return ZR_READ;
	}

	//
	ze->index = uf->num_file;
	TCHAR tfn[MAX_PATH];
#ifdef UNICODE
	MultiByteToWideChar(CP_UTF8, 0, fn, -1, tfn, MAX_PATH);
#else
	strcpy(tfn, fn);
#endif
	// As a safety feature: if the zip filename had sneaky stuff
	// like "c:\windows\file.txt" or "\windows\file.txt" or "fred\..\..\..\windows\file.txt"
	// then we get rid of them all. That way, when the programmer does UnzipItem(hz,i,ze.name),
	// it won't be a problem. (If the programmer really did want to get the full evil information,
	// then they can edit out this security feature from here).
	// In particular, we chop off any prefixes that are "c:\" or "\" or "/" or "[stuff]\.." or "[stuff]/.."
	const TCHAR *sfn = tfn;

	for (;;)
	{
		if (sfn[0] != 0 && sfn[1] == ':')
		{
			sfn += 2;
			continue;
		}

		if (sfn[0] == '\\')
		{
			sfn++;
			continue;
		}

		if (sfn[0] == '/')
		{
			sfn++;
			continue;
		}

		const TCHAR *c;
		c = _tcsstr(sfn, _T("\\..\\"));

		if (c != 0)
		{
			sfn = c + 4;
			continue;
		}

		c = _tcsstr(sfn, _T("\\../"));

		if (c != 0)
		{
			sfn = c + 4;
			continue;
		}

		c = _tcsstr(sfn, _T("/../"));

		if (c != 0)
		{
			sfn = c + 4;
			continue;
		}

		c = _tcsstr(sfn, _T("/..\\"));

		if (c != 0)
		{
			sfn = c + 4;
			continue;
		}

		break;
	}

	_tcscpy(ze->name, sfn);


	// zip has an 'attribute' 32bit value. Its lower half is windows stuff
	// its upper half is standard unix stat.st_mode. We'll start trying
	// to read it in unix mode
	unsigned long a = ufi.external_fa;
	bool isdir  =   (a & 0x40000000) != 0;
	bool readonly =  (a & 0x00800000) == 0;
	//bool readable=  (a&0x01000000)!=0; // unused
	//bool executable=(a&0x00400000)!=0; // unused
	bool hidden = false, system = false, archive = true;
	// but in normal hostmodes these are overridden by the lower half...
	int host = ufi.version >> 8;

	if (host == 0 || host == 7 || host == 11 || host == 14)
	{
		readonly =  (a & 0x00000001) != 0;
		hidden =    (a & 0x00000002) != 0;
		system =    (a & 0x00000004) != 0;
		isdir =     (a & 0x00000010) != 0;
		archive =   (a & 0x00000020) != 0;
	}

	ze->attr = 0;

	if (isdir) ze->attr |= FILE_ATTRIBUTE_DIRECTORY;

	if (archive) ze->attr |= FILE_ATTRIBUTE_ARCHIVE;

	if (hidden) ze->attr |= FILE_ATTRIBUTE_HIDDEN;

	if (readonly) ze->attr |= FILE_ATTRIBUTE_READONLY;

	if (system) ze->attr |= FILE_ATTRIBUTE_SYSTEM;

	ze->comp_size = ufi.compressed_size;
	ze->unc_size = ufi.uncompressed_size;
	//
	WORD dostime = (WORD)(ufi.dosDate & 0xFFFF);
	WORD dosdate = (WORD)((ufi.dosDate >> 16) & 0xFFFF);
	FILETIME ftd = dosdatetime2filetime(dosdate, dostime);
	FILETIME ft;
	LocalFileTimeToFileTime(&ftd, &ft);
	ze->atime = ft;
	ze->ctime = ft;
	ze->mtime = ft;
	// the zip will always have at least that dostime. But if it also has
	// an extra header, then we'll instead get the info from that.
	unsigned int epos = 0;

	while (epos + 4 < extralen)
	{
		char etype[3];
		etype[0] = extra[epos + 0];
		etype[1] = extra[epos + 1];
		etype[2] = 0;
		int size = extra[epos + 2];

		if (strcmp(etype, "UT") != 0)
		{
			epos += 4 + size;
			continue;
		}

		int flags = extra[epos + 4];
		bool hasmtime = (flags & 1) != 0;
		bool hasatime = (flags & 2) != 0;
		bool hasctime = (flags & 4) != 0;
		epos += 5;

		if (hasmtime)
		{
			lutime_t mtime = ((extra[epos + 0]) << 0) | ((extra[epos + 1]) << 8) | ((extra[epos + 2]) << 16) | ((extra[epos + 3]) << 24);
			epos += 4;
			ze->mtime = timet2filetime(mtime);
		}

		if (hasatime)
		{
			lutime_t atime = ((extra[epos + 0]) << 0) | ((extra[epos + 1]) << 8) | ((extra[epos + 2]) << 16) | ((extra[epos + 3]) << 24);
			epos += 4;
			ze->atime = timet2filetime(atime);
		}

		if (hasctime)
		{
			lutime_t ctime = ((extra[epos + 0]) << 0) | ((extra[epos + 1]) << 8) | ((extra[epos + 2]) << 16) | ((extra[epos + 3]) << 24);
			epos += 4;
			ze->ctime = timet2filetime(ctime);
		}

		break;
	}

	//
	if (extra != 0) delete[] extra;

	memcpy(&cze, ze, sizeof(ZIPENTRY));
	czei = index;
	return ZR_OK;
}

ZRESULT TUnzip::Find(const TCHAR *tname, bool ic, int *index, ZIPENTRY *ze)
{
	char name[MAX_PATH];
#ifdef UNICODE
	WideCharToMultiByte(CP_UTF8, 0, tname, -1, name, MAX_PATH, 0, 0);
#else
	strcpy(name, tname);
#endif
	int res = unzLocateFile(uf, name, ic ? CASE_INSENSITIVE : CASE_SENSITIVE);

	if (res != UNZ_OK)
	{
		if (index != 0) *index = -1;

		if (ze != NULL)
		{
			ZeroMemory(ze, sizeof(ZIPENTRY));
			ze->index = -1;
		}

		return ZR_NOTFOUND;
	}

	if (currentfile != -1) unzCloseCurrentFile(uf);

	currentfile = -1;
	int i = (int)uf->num_file;

	if (index != NULL) *index = i;

	if (ze != NULL)
	{
		ZRESULT zres = Get(i, ze);

		if (zres != ZR_OK) return zres;
	}

	return ZR_OK;
}

void EnsureDirectory(const TCHAR *rootdir, const TCHAR *dir)
{
	if (rootdir != 0 && GetFileAttributes(rootdir) == 0xFFFFFFFF) CreateDirectory(rootdir, 0);

	if (*dir == 0) return;

	const TCHAR *lastslash = dir, *c = lastslash;

	while (*c != 0)
	{
		if (*c == '/' || *c == '\\') lastslash = c;

		c++;
	}

	const TCHAR *name = lastslash;

	if (lastslash != dir)
	{
		TCHAR tmp[MAX_PATH];
		memcpy(tmp, dir, sizeof(TCHAR) * (lastslash - dir));
		tmp[lastslash - dir] = 0;
		EnsureDirectory(rootdir, tmp);
		name++;
	}

	TCHAR cd[MAX_PATH];
	*cd = 0;

	if (rootdir != 0) _tcscpy(cd, rootdir);

	_tcscat(cd, dir);

	if (GetFileAttributes(cd) == 0xFFFFFFFF) CreateDirectory(cd, NULL);
}



ZRESULT TUnzip::Unzip(int index, void *dst, unsigned int len, DWORD flags)
{
	if (flags != ZIP_MEMORY && flags != ZIP_FILENAME && flags != ZIP_HANDLE) return ZR_ARGS;

	if (flags == ZIP_MEMORY)
	{
		if (index != currentfile)
		{
			if (currentfile != -1) unzCloseCurrentFile(uf);

			currentfile = -1;

			if (index >= (int)uf->gi.number_entry) return ZR_ARGS;

			if (index < (int)uf->num_file) unzGoToFirstFile(uf);

			while ((int)uf->num_file < index) unzGoToNextFile(uf);

			unzOpenCurrentFile(uf, password);
			currentfile = index;
		}

		bool reached_eof;
		int res = unzReadCurrentFile(uf, dst, len, &reached_eof);

		if (res <= 0)
		{
			unzCloseCurrentFile(uf);
			currentfile = -1;
		}

		if (reached_eof) return ZR_OK;

		if (res > 0) return ZR_MORE;

		if (res == UNZ_PASSWORD) return ZR_PASSWORD;

		return ZR_FLATE;
	}

	// otherwise we're writing to a handle or a file
	if (currentfile != -1) unzCloseCurrentFile(uf);

	currentfile = -1;

	if (index >= (int)uf->gi.number_entry) return ZR_ARGS;

	if (index < (int)uf->num_file) unzGoToFirstFile(uf);

	while ((int)uf->num_file < index) unzGoToNextFile(uf);

	ZIPENTRY ze;
	Get(index, &ze);

	// zipentry=directory is handled specially
	if ((ze.attr & FILE_ATTRIBUTE_DIRECTORY) != 0)
	{
		if (flags == ZIP_HANDLE) return ZR_OK; // don't do anything

		const TCHAR *dir = (const TCHAR *)dst;
		bool isabsolute = (dir[0] == '/' || dir[0] == '\\' || (dir[0] != 0 && dir[1] == ':'));

		if (isabsolute) EnsureDirectory(0, dir);

		else EnsureDirectory(rootdir, dir);

		return ZR_OK;
	}

	// otherwise, we write the zipentry to a file/handle
	HANDLE h;

	if (flags == ZIP_HANDLE) h = dst;

	else
	{
		const TCHAR *ufn = (const TCHAR *)dst;
		// We'll qualify all relative names to our root dir, and leave absolute names as they are
		// ufn="zipfile.txt"  dir=""  name="zipfile.txt"  fn="c:\\currentdir\\zipfile.txt"
		// ufn="dir1/dir2/subfile.txt"  dir="dir1/dir2/"  name="subfile.txt"  fn="c:\\currentdir\\dir1/dir2/subfiles.txt"
		// ufn="\z\file.txt"  dir="\z\"  name="file.txt"  fn="\z\file.txt"
		// This might be a security risk, in the case where we just use the zipentry's name as "ufn", where
		// a malicious zip could unzip itself into c:\windows. Our solution is that GetZipItem (which
		// is how the user retrieve's the file's name within the zip) never returns absolute paths.
		const TCHAR *name = ufn;
		const TCHAR *c = name;

		while (*c != 0)
		{
			if (*c == '/' || *c == '\\') name = c + 1;

			c++;
		}

		TCHAR dir[MAX_PATH];
		_tcscpy(dir, ufn);

		if (name == ufn) *dir = 0;

		else dir[name - ufn] = 0;

		TCHAR fn[MAX_PATH];
		bool isabsolute = (dir[0] == '/' || dir[0] == '\\' || (dir[0] != 0 && dir[1] == ':'));

		if (isabsolute)
		{
			wsprintf(fn, _T("%s%s"), dir, name);
			EnsureDirectory(0, dir);
		}

		else
		{
			wsprintf(fn, _T("%s%s%s"), rootdir, dir, name);
			EnsureDirectory(rootdir, dir);
		}

		//
		h = CreateFile(fn, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, ze.attr, NULL);
	}

	if (h == INVALID_HANDLE_VALUE) return ZR_NOFILE;

	unzOpenCurrentFile(uf, password);

	if (unzbuf == 0) unzbuf = new char[16384];

	DWORD haderr = 0;
	//

	for (; haderr == 0;)
	{
		bool reached_eof;
		int res = unzReadCurrentFile(uf, unzbuf, 16384, &reached_eof);

		if (res == UNZ_PASSWORD)
		{
			haderr = ZR_PASSWORD;
			break;
		}

		if (res < 0)
		{
			haderr = ZR_FLATE;
			break;
		}

		if (res > 0)
		{
			DWORD writ;
			BOOL bres = WriteFile(h, unzbuf, res, &writ, NULL);

			if (!bres)
			{
				haderr = ZR_WRITE;
				break;
			}
		}

		if (reached_eof) break;

		if (res == 0)
		{
			haderr = ZR_FLATE;
			break;
		}
	}

	if (!haderr) SetFileTime(h, &ze.ctime, &ze.atime, &ze.mtime); // may fail if it was a pipe

	if (flags != ZIP_HANDLE) CloseHandle(h);

	unzCloseCurrentFile(uf);

	if (haderr != 0) return haderr;

	return ZR_OK;
}

ZRESULT TUnzip::Close()
{
	if (currentfile != -1) unzCloseCurrentFile(uf);

	currentfile = -1;

	if (uf != 0) unzClose(uf);

	uf = 0;
	return ZR_OK;
}





ZRESULT lasterrorU = ZR_OK;

unsigned int FormatZipMessageU(ZRESULT code, TCHAR *buf, unsigned int len)
{
	if (code == ZR_RECENT) code = lasterrorU;

	const TCHAR *msg = _T("unknown zip result code");

	switch (code)
	{
		case ZR_OK:
			msg = _T("Success");
			break;

		case ZR_NODUPH:
			msg = _T("Culdn't duplicate handle");
			break;

		case ZR_NOFILE:
			msg = _T("Couldn't create/open file");
			break;

		case ZR_NOALLOC:
			msg = _T("Failed to allocate memory");
			break;

		case ZR_WRITE:
			msg = _T("Error writing to file");
			break;

		case ZR_NOTFOUND:
			msg = _T("File not found in the zipfile");
			break;

		case ZR_MORE:
			msg = _T("Still more data to unzip");
			break;

		case ZR_CORRUPT:
			msg = _T("Zipfile is corrupt or not a zipfile");
			break;

		case ZR_READ:
			msg = _T("Error reading file");
			break;

		case ZR_PASSWORD:
			msg = _T("Correct password required");
			break;

		case ZR_ARGS:
			msg = _T("Caller: faulty arguments");
			break;

		case ZR_PARTIALUNZ:
			msg = _T("Caller: the file had already been partially unzipped");
			break;

		case ZR_NOTMMAP:
			msg = _T("Caller: can only get memory of a memory zipfile");
			break;

		case ZR_MEMSIZE:
			msg = _T("Caller: not enough space allocated for memory zipfile");
			break;

		case ZR_FAILED:
			msg = _T("Caller: there was a previous error");
			break;

		case ZR_ENDED:
			msg = _T("Caller: additions to the zip have already been ended");
			break;

		case ZR_ZMODE:
			msg = _T("Caller: mixing creation and opening of zip");
			break;

		case ZR_NOTINITED:
			msg = _T("Zip-bug: internal initialisation not completed");
			break;

		case ZR_SEEK:
			msg = _T("Zip-bug: trying to seek the unseekable");
			break;

		case ZR_MISSIZE:
			msg = _T("Zip-bug: the anticipated size turned out wrong");
			break;

		case ZR_NOCHANGE:
			msg = _T("Zip-bug: tried to change mind, but not allowed");
			break;

		case ZR_FLATE:
			msg = _T("Zip-bug: an internal error during flation");
			break;
	}

	unsigned int mlen = (unsigned int)_tcslen(msg);

	if (buf == 0 || len == 0) return mlen;

	unsigned int n = mlen;

	if (n + 1 > len) n = len - 1;

	_tcsncpy(buf, msg, n);
	buf[n] = 0;
	return mlen;
}


typedef struct
{
	DWORD flag;
	TUnzip *unz;
} TUnzipHandleData;

HZIP OpenZipInternal(void *z, unsigned int len, DWORD flags, const char *password)
{
	TUnzip *unz = new TUnzip(password);
	lasterrorU = unz->Open(z, len, flags);

	if (lasterrorU != ZR_OK)
	{
		delete unz;
		return 0;
	}

	TUnzipHandleData *han = new TUnzipHandleData;
	han->flag = 1;
	han->unz = unz;
	return (HZIP)han;
}
HZIP OpenZipHandle(HANDLE h, const char *password)
{
	return OpenZipInternal((void *)h, 0, ZIP_HANDLE, password);
}
HZIP OpenZip(const TCHAR *fn, const char *password)
{
	return OpenZipInternal((void *)fn, 0, ZIP_FILENAME, password);
}
HZIP OpenZip(void *z, unsigned int len, const char *password)
{
	return OpenZipInternal(z, len, ZIP_MEMORY, password);
}


ZRESULT GetZipItem(HZIP hz, int index, ZIPENTRY *ze)
{
	ze->index = 0;
	*ze->name = 0;
	ze->unc_size = 0;

	if (hz == 0)
	{
		lasterrorU = ZR_ARGS;
		return ZR_ARGS;
	}

	TUnzipHandleData *han = (TUnzipHandleData *)hz;

	if (han->flag != 1)
	{
		lasterrorU = ZR_ZMODE;
		return ZR_ZMODE;
	}

	TUnzip *unz = han->unz;
	lasterrorU = unz->Get(index, ze);
	return lasterrorU;
}

ZRESULT FindZipItem(HZIP hz, const TCHAR *name, bool ic, int *index, ZIPENTRY *ze)
{
	if (hz == 0)
	{
		lasterrorU = ZR_ARGS;
		return ZR_ARGS;
	}

	TUnzipHandleData *han = (TUnzipHandleData *)hz;

	if (han->flag != 1)
	{
		lasterrorU = ZR_ZMODE;
		return ZR_ZMODE;
	}

	TUnzip *unz = han->unz;
	lasterrorU = unz->Find(name, ic, index, ze);
	return lasterrorU;
}

ZRESULT UnzipItemInternal(HZIP hz, int index, void *dst, unsigned int len, DWORD flags)
{
	if (hz == 0)
	{
		lasterrorU = ZR_ARGS;
		return ZR_ARGS;
	}

	TUnzipHandleData *han = (TUnzipHandleData *)hz;

	if (han->flag != 1)
	{
		lasterrorU = ZR_ZMODE;
		return ZR_ZMODE;
	}

	TUnzip *unz = han->unz;
	lasterrorU = unz->Unzip(index, dst, len, flags);
	return lasterrorU;
}
ZRESULT UnzipItemHandle(HZIP hz, int index, HANDLE h)
{
	return UnzipItemInternal(hz, index, (void *)h, 0, ZIP_HANDLE);
}
ZRESULT UnzipItem(HZIP hz, int index, const TCHAR *fn)
{
	return UnzipItemInternal(hz, index, (void *)fn, 0, ZIP_FILENAME);
}
ZRESULT UnzipItem(HZIP hz, int index, void *z, unsigned int len)
{
	return UnzipItemInternal(hz, index, z, len, ZIP_MEMORY);
}

ZRESULT SetUnzipBaseDir(HZIP hz, const TCHAR *dir)
{
	if (hz == 0)
	{
		lasterrorU = ZR_ARGS;
		return ZR_ARGS;
	}

	TUnzipHandleData *han = (TUnzipHandleData *)hz;

	if (han->flag != 1)
	{
		lasterrorU = ZR_ZMODE;
		return ZR_ZMODE;
	}

	TUnzip *unz = han->unz;
	lasterrorU = unz->SetUnzipBaseDir(dir);
	return lasterrorU;
}


ZRESULT CloseZipU(HZIP hz)
{
	if (hz == 0)
	{
		lasterrorU = ZR_ARGS;
		return ZR_ARGS;
	}

	TUnzipHandleData *han = (TUnzipHandleData *)hz;

	if (han->flag != 1)
	{
		lasterrorU = ZR_ZMODE;
		return ZR_ZMODE;
	}

	TUnzip *unz = han->unz;
	lasterrorU = unz->Close();
	delete unz;
	delete han;
	return lasterrorU;
}

bool IsZipHandleU(HZIP hz)
{
	if (hz == 0) return false;

	TUnzipHandleData *han = (TUnzipHandleData *)hz;
	return (han->flag == 1);
}
posted @ 2020-06-07 20:48  veis  阅读(49)  评论(0编辑  收藏