摘要:
Bert-vits2项目又更新了,更新了一个新的分支:中文特化,所谓中文特化,即针对中文音色的特殊优化版本,纯中文底模效果百尺竿头更进一步,同时首次引入了大模型,使用国产IDEA-CCNL/Erlangshen-MegatronBert-1.3B大模型作为Bert特征提取,基本上完全解决了发音的ba 阅读全文
Bert-vits2项目又更新了,更新了一个新的分支:中文特化,所谓中文特化,即针对中文音色的特殊优化版本,纯中文底模效果百尺竿头更进一步,同时首次引入了大模型,使用国产IDEA-CCNL/Erlangshen-MegatronBert-1.3B大模型作为Bert特征提取,基本上完全解决了发音的ba 阅读全文
posted @ 2024-01-06 23:04
刘悦的技术博客
阅读(1649)
评论(1)
推荐(0)

按照固有的思维方式,如果想要语音克隆首先得有克隆对象具体的语言语音样本,换句话说,克隆对象必须说过某一种语言的话才行,但现在,coqui-ai TTS V2.0版本做到了,真正的跨语种无需训练的语音克隆技术。 coqui-ai TTS实现跨语种、无需训练克隆语音的方法是基于Tacotron模型,该模
AI换脸已经不是什么时新的技术了,从DeepFace到Facesweap,再到Roop。AI换脸技术中出现了一种名为“一键换脸”的方法,它不需要训练模型。这种方法利用了名为“GHOST”的技术,它是一种新的一键换脸方法,可以用于图像和视频领域。 这种技术采用了先进的生成对抗网络(GAN)、自动编码器
日语因为存在假名,会导致翻译软件进行翻译时机翻味道过重的问题,比如積ん読(つんどく)这个词,大多数软件会翻译成:堆积的读,但其实是明明买了书却不读,光放着的意思。有时候也需要单独查句子中的单词释义来理解句子的意思,但一看下去全是假名,无法像中文或者英文那样进行简单的分词操作。 本次我们基于Pytho
之前我们介绍了如何使用嵌入式 Python3 环境给项目制作一键整合包,在使用嵌入式 Python 环境时,通常是作为另一个应用程序的一部分,而Python3虚拟环境是为了在开发过程中隔离项目所需的 Python 环境。虚拟环境允许我们在同一台计算机上的不同项目中使用不同的 Python 版本和软件
在音视频领域,把已经发布的混音歌曲或者音频文件逆向分离一直是世界性的课题。音波混合的物理特性导致在没有原始工程文件的情况下,将其还原和分离是一件很有难度的事情。 言及背景音人声分离技术,就不能不提Spleeter,它是一种用于音频源分离(音乐分离)的开源深度学习算法,由Deezer研究团队开发。使用
对于深度学习初学者来说,JupyterNoteBook的脚本运行形式显然更加友好,依托Python语言的跨平台特性,JupyterNoteBook既可以在本地线下环境运行,也可以在线上服务器上运行。GoogleColab作为免费GPU算力平台的执牛耳者,更是让JupyterNoteBook的脚本运行
近日,Bert-vits2发布了最新的版本2.3-final,意为最终版,修复了一些已知的bug,添加基于 WavLM 的 Discriminator(来源于 StyleTTS2),令人意外的是,因情感控制效果不佳,去除了 CLAP情感模型,换成了相对简单的 BERT 融合语义方式。 事实上,经过2
对于笔者这样的穷哥们来讲,GoogleColab就是黑暗中的一道光,就算有训练时长限制,也能凑合用了,要啥自行车?要饭咱也就别嫌饭馊了,本次我们基于GoogleColab在云端训练和推理Bert-vits2-v2.2项目,复刻那黑破坏神角色莉莉丝(lilith)。
近日,Bert-vits2-v2.2如约更新,该新版本v2.2主要把Emotion 模型换用CLAP多模态模型,推理支持输入text prompt提示词和audio prompt提示语音来进行引导风格化合成,让推理音色更具情感特色,并且推出了新的预处理webuI,操作上更加亲民和接地气。 更多情报请
浙公网安备 33010602011771号