东寻

导航

从Go语言编码角度解释实现简易区块链——实现交易

转载请注明出处:https://www.cnblogs.com/ustca/p/11765349.html

在公链基础上实现区块链交易

区块链的目的,是能够安全可靠的存储交易,比如我们常见的比特币的交易,这里我们会以比特币为例实现区块链上的通用交易。上一节用简单的数据结构完成了区块链的公链,本节在此基础上对区块链的交易部分进行实现。实现公链

交易机制

在区块链中,交易一旦被创建,就没有任何人能够再去修改或是删除它,本节将实现一个交易的基本框架,具体交易细节将会在之后给出。

以比特币为例,不同于一般概念的账户模型,其交易采用的是UTXO模型。我们所需要的信息,都间接的包含在了每一笔交易中,包括用户的余额信息。

对于每一笔交易,你可以想象成一个通道,通道的左端有若干个输入信息,通道的右端会有若干输出信息。输入信息代表的意义是,该交易所用的币是从何而来,一条交易可以有0到多个币源(0是特殊情况,即被挖出的矿,因为没有用户来源,所以没有输入信息)。输出信息代表的意义是,进行该交易后,数字货币变动到哪里去了。因此,一条交易信息中货币的输入数量与输出数量应该是等价的,数字货币的来源总和,等于数字货币的输出总和。不难想象,与传统的账户模型相比,在UTXO模型中用户的账户余额是记录在交易的输出部分。

举个最简单的例子,假设A需要给B支付了一个比特币,将执行以下流程:

  1. 查看当前已有的交易信息,找到交易输出指向自己的交易并将余额计入总和
  2. 判断当前交易信息输出中是否有足够的数字货币属于自己
  3. 当余额不足时,提示余额不足信息
  4. 当余额充足时,新建一条交易,即一个UTXO
  5. 该UTXO的输入信息是消费用户的部分余额(不需要消费用户的所有余额,只要满足够用就行),而用户的余额是记录在之前已有的UTXO的输出中,所以新交易的输入,便是之前某些交易的输出。
  6. 当用户找到的余额数量与本次交易所需的数量不相等时,用户可以将剩下的货币再向自己输出,即找零,以保证交易的输入与输出相等

这样我们就实现了一个简单的交易,在这场交易中有货币的来源,货币有明确的去向,同时携带了我们正在进行的交易信息。

之后我们将结合代码,让这种逻辑变得更加清晰,下面这张图是对UTXO模型的简单描述:
在这里插入图片描述
Coinbase交易是特殊的一种交易,它表示矿工挖出了新的矿,作用是将新挖出的矿加入公链中并将输出指向挖矿的矿工。

该例子表示,张三挖矿得到12.5个比特币,然后支付了2.5个给李四,自己剩余10比特币,之后张三李四各支付2.5个比特币给王五,最终张三还剩7.5个比特币,李四余额用尽,王五剩余5个比特币,总和12.5等于张三挖出的总矿币。

编码实现

与之前已经完成的实现公链的代码相比,区块链的交易需要新建一个transaction.go文件,用来实现交易逻辑。其余文件中的代码,会跟随交易机制的加入进行微小的调整。

transaction.go

以下为transaction.go的代码:

package main

import (
	"bytes"
	"crypto/sha256"
	"encoding/gob"
	"encoding/hex"
	"fmt"
	"log"
)

const subsidy = 10

// Transaction represents a Bitcoin transaction
type Transaction struct {
	ID   []byte
	Vin  []TXInput
	Vout []TXOutput
}

// IsCoinbase checks whether the transaction is coinbase
func (tx Transaction) IsCoinbase() bool {
	return len(tx.Vin) == 1 && len(tx.Vin[0].Txid) == 0 && tx.Vin[0].Vout == -1
}

// SetID sets ID of a transaction
func (tx *Transaction) SetID() {
	var encoded bytes.Buffer
	var hash [32]byte

	enc := gob.NewEncoder(&encoded)
	err := enc.Encode(tx)
	if err != nil {
		log.Panic(err)
	}
	hash = sha256.Sum256(encoded.Bytes())
	tx.ID = hash[:]
}

// TXInput represents a transaction input
type TXInput struct {
	Txid      []byte
	Vout      int
	ScriptSig string
}

// TXOutput represents a transaction output
type TXOutput struct {
	Value        int
	ScriptPubKey string
}

// CanUnlockOutputWith checks whether the address initiated the transaction
func (in *TXInput) CanUnlockOutputWith(unlockingData string) bool {
	return in.ScriptSig == unlockingData
}

// CanBeUnlockedWith checks if the output can be unlocked with the provided data
func (out *TXOutput) CanBeUnlockedWith(unlockingData string) bool {
	return out.ScriptPubKey == unlockingData
}

// NewCoinbaseTX creates a new coinbase transaction
func NewCoinbaseTX(to, data string) *Transaction {
	if data == "" {
		data = fmt.Sprintf("Reward to '%s'", to)
	}

	txin := TXInput{[]byte{}, -1, data}
	txout := TXOutput{subsidy, to}
	tx := Transaction{nil, []TXInput{txin}, []TXOutput{txout}}
	tx.SetID()

	return &tx
}

// NewUTXOTransaction creates a new transaction
func NewUTXOTransaction(from, to string, amount int, bc *Blockchain) *Transaction {
	var inputs []TXInput
	var outputs []TXOutput

	acc, validOutputs := bc.FindSpendableOutputs(from, amount)

	if acc < amount {
		log.Panic("ERROR: Not enough funds")
	}

	// Build a list of inputs
	for txid, outs := range validOutputs {
		txID, err := hex.DecodeString(txid)
		if err != nil {
			log.Panic(err)
		}

		for _, out := range outs {
			input := TXInput{txID, out, from}
			inputs = append(inputs, input)
		}
	}

	// Build a list of outputs
	outputs = append(outputs, TXOutput{amount, to})
	if acc > amount {
		outputs = append(outputs, TXOutput{acc - amount, from}) // a change
	}

	tx := Transaction{nil, inputs, outputs}
	tx.SetID()

	return &tx
}

代码主要包含以下内容:

  • Transaction 结构体,包含当前交易的ID(交易需要ID)、输入数组以及输出数组
  • IsCoinbase函数,用来判断当前交易是否是Coinbase交易(挖矿交易)
  • SetID函数给交易设置id
  • TXInput 结构体,包含输入的某条交易的id,该交易某个输出的金额与地址
  • TXOutput 结构体,包含当前交易的某个输出的金额与地址
  • CanUnlockOutputWith函数判断提供的地址能否匹配某条交易记录的输入地址
  • CanBeUnlockedWith函数判断提供的地址能否匹配某条交易记录的输出地址
  • NewCoinbaseTX函数创建一条挖矿交易
  • NewUTXOTransaction函数创建一条新的交易

关于TXInput与TXOutput中地址的问题,因为目前还没有实现区块链中的地址,所以本节涉及的地址直接用字符串代替,验证地址也只是进行了字符串对比。地址是必要的,它标注了当前的余额属于谁,这里因为刚实现交易机制,还没有引入真正的地址机制,所以是存在漏洞的,用户只要知道有哪些用户就可以直接往自己地址转钱,在下一节会实现地址机制进行完善。

block.go

在transaction.go中实现了交易的结构体,如何创建一条新的交易,以及简单的交易对象判断。在其余文件中,block.go文件做了一些改动,主要是将原本的data字符串换成了Transaction交易。同样的,下一节中我们会将本节的地址字符串换成相应机制的地址,以下是改动后的block.go文件:

package main

import (
	"bytes"
	"crypto/sha256"
	"encoding/gob"
	"log"
	"time"
)

// Block keeps block headers
type Block struct {
	Timestamp     int64
	Transactions  []*Transaction
	PrevBlockHash []byte
	Hash          []byte
	Nonce         int
}

// Serialize serializes the block
func (b *Block) Serialize() []byte {
	var result bytes.Buffer
	encoder := gob.NewEncoder(&result)

	err := encoder.Encode(b)
	if err != nil {
		log.Panic(err)
	}

	return result.Bytes()
}

// HashTransactions returns a hash of the transactions in the block
func (b *Block) HashTransactions() []byte {
	var txHashes [][]byte
	var txHash [32]byte

	for _, tx := range b.Transactions {
		txHashes = append(txHashes, tx.ID)
	}
	txHash = sha256.Sum256(bytes.Join(txHashes, []byte{}))

	return txHash[:]
}

// NewBlock creates and returns Block
func NewBlock(transactions []*Transaction, prevBlockHash []byte) *Block {
	block := &Block{time.Now().Unix(), transactions, prevBlockHash, []byte{}, 0}
	pow := NewProofOfWork(block)
	nonce, hash := pow.Run()

	block.Hash = hash[:]
	block.Nonce = nonce

	return block
}

// NewGenesisBlock creates and returns genesis Block
func NewGenesisBlock(coinbase *Transaction) *Block {
	return NewBlock([]*Transaction{coinbase}, []byte{})
}

// DeserializeBlock deserializes a block
func DeserializeBlock(d []byte) *Block {
	var block Block

	decoder := gob.NewDecoder(bytes.NewReader(d))
	err := decoder.Decode(&block)
	if err != nil {
		log.Panic(err)
	}

	return &block
}

添加了HashTransactions函数,用来将交易转换成哈希值,其余函数随结构体中Data->Transactions的变动相应调整。

blockchain.go

在blockchain.go中,涉及到寻找用户余额(未花费交易输出)操作,需要多做一些调整:

package main

import (
	"encoding/hex"
	"fmt"
	"log"
	"os"
	"bolt-master"
)

const dbFile = "blockchain.db"
const blocksBucket = "blocks"
const genesisCoinbaseData = "The Times 03/Jan/2009 Chancellor on brink of second bailout for banks"

// Blockchain implements interactions with a DB
type Blockchain struct {
	tip []byte
	db  *bolt.DB
}

// BlockchainIterator is used to iterate over blockchain blocks
type BlockchainIterator struct {
	currentHash []byte
	db          *bolt.DB
}

// MineBlock mines a new block with the provided transactions
func (bc *Blockchain) MineBlock(transactions []*Transaction) {
	var lastHash []byte

	err := bc.db.View(func(tx *bolt.Tx) error {
		b := tx.Bucket([]byte(blocksBucket))
		lastHash = b.Get([]byte("l"))

		return nil
	})

	if err != nil {
		log.Panic(err)
	}

	newBlock := NewBlock(transactions, lastHash)

	err = bc.db.Update(func(tx *bolt.Tx) error {
		b := tx.Bucket([]byte(blocksBucket))
		err := b.Put(newBlock.Hash, newBlock.Serialize())
		if err != nil {
			log.Panic(err)
		}

		err = b.Put([]byte("l"), newBlock.Hash)
		if err != nil {
			log.Panic(err)
		}

		bc.tip = newBlock.Hash

		return nil
	})
}

// FindUnspentTransactions returns a list of transactions containing unspent outputs
func (bc *Blockchain) FindUnspentTransactions(address string) []Transaction {
	var unspentTXs []Transaction
	spentTXOs := make(map[string][]int)
	bci := bc.Iterator()

	for {
		block := bci.Next()

		for _, tx := range block.Transactions {
			txID := hex.EncodeToString(tx.ID)

		Outputs:
			for outIdx, out := range tx.Vout {
				// Was the output spent?
				if spentTXOs[txID] != nil {
					for _, spentOut := range spentTXOs[txID] {
						if spentOut == outIdx {
							continue Outputs
						}
					}
				}

				if out.CanBeUnlockedWith(address) {
					unspentTXs = append(unspentTXs, *tx)
				}
			}

			if tx.IsCoinbase() == false {
				for _, in := range tx.Vin {
					if in.CanUnlockOutputWith(address) {
						inTxID := hex.EncodeToString(in.Txid)
						spentTXOs[inTxID] = append(spentTXOs[inTxID], in.Vout)
					}
				}
			}
		}

		if len(block.PrevBlockHash) == 0 {
			break
		}
	}

	return unspentTXs
}

// FindUTXO finds and returns all unspent transaction outputs
func (bc *Blockchain) FindUTXO(address string) []TXOutput {
	var UTXOs []TXOutput
	unspentTransactions := bc.FindUnspentTransactions(address)

	for _, tx := range unspentTransactions {
		for _, out := range tx.Vout {
			if out.CanBeUnlockedWith(address) {
				UTXOs = append(UTXOs, out)
			}
		}
	}

	return UTXOs
}

// FindSpendableOutputs finds and returns unspent outputs to reference in inputs
func (bc *Blockchain) FindSpendableOutputs(address string, amount int) (int, map[string][]int) {
	unspentOutputs := make(map[string][]int)
	unspentTXs := bc.FindUnspentTransactions(address)
	accumulated := 0

Work:
	for _, tx := range unspentTXs {
		txID := hex.EncodeToString(tx.ID)

		for outIdx, out := range tx.Vout {
			if out.CanBeUnlockedWith(address) && accumulated < amount {
				accumulated += out.Value
				unspentOutputs[txID] = append(unspentOutputs[txID], outIdx)

				if accumulated >= amount {
					break Work
				}
			}
		}
	}

	return accumulated, unspentOutputs
}

// Iterator returns a BlockchainIterat
func (bc *Blockchain) Iterator() *BlockchainIterator {
	bci := &BlockchainIterator{bc.tip, bc.db}

	return bci
}

// Next returns next block starting from the tip
func (i *BlockchainIterator) Next() *Block {
	var block *Block

	err := i.db.View(func(tx *bolt.Tx) error {
		b := tx.Bucket([]byte(blocksBucket))
		encodedBlock := b.Get(i.currentHash)
		block = DeserializeBlock(encodedBlock)

		return nil
	})

	if err != nil {
		log.Panic(err)
	}

	i.currentHash = block.PrevBlockHash

	return block
}

func dbExists() bool {
	if _, err := os.Stat(dbFile); os.IsNotExist(err) {
		return false
	}

	return true
}

// NewBlockchain creates a new Blockchain with genesis Block
func NewBlockchain(address string) *Blockchain {
	if dbExists() == false {
		fmt.Println("No existing blockchain found. Create one first.")
		os.Exit(1)
	}

	var tip []byte
	db, err := bolt.Open(dbFile, 0600, nil)
	if err != nil {
		log.Panic(err)
	}

	err = db.Update(func(tx *bolt.Tx) error {
		b := tx.Bucket([]byte(blocksBucket))
		tip = b.Get([]byte("l"))

		return nil
	})

	if err != nil {
		log.Panic(err)
	}

	bc := Blockchain{tip, db}

	return &bc
}

// CreateBlockchain creates a new blockchain DB
func CreateBlockchain(address string) *Blockchain {
	if dbExists() {
		fmt.Println("Blockchain already exists.")
		os.Exit(1)
	}

	var tip []byte
	db, err := bolt.Open(dbFile, 0600, nil)
	if err != nil {
		log.Panic(err)
	}

	err = db.Update(func(tx *bolt.Tx) error {
		cbtx := NewCoinbaseTX(address, genesisCoinbaseData)
		genesis := NewGenesisBlock(cbtx)

		b, err := tx.CreateBucket([]byte(blocksBucket))
		if err != nil {
			log.Panic(err)
		}

		err = b.Put(genesis.Hash, genesis.Serialize())
		if err != nil {
			log.Panic(err)
		}

		err = b.Put([]byte("l"), genesis.Hash)
		if err != nil {
			log.Panic(err)
		}
		tip = genesis.Hash

		return nil
	})

	if err != nil {
		log.Panic(err)
	}

	bc := Blockchain{tip, db}

	return &bc
}

代码的主要变动是新增了三个关于交易的函数:

  • FindUnspendTransactions遍历公链,寻找交易信息中没有被使用过输出的交易,即未被花费过的余额。当一条交易中的余额被其他交易用做过输入,该余额也就不在具有余额的属性,不能再次被交易
  • FindUTXO在内部调用了FindUnspendTransactions函数,与FindUnspendTransactions不同的是它用于查询用户的余额信息,即所有有效未花费余额的总和
  • FindSpendableOutputs在内部调用了FindUnspendTransactions函数,用于找出哪些余额是可用的

其次,原本的Addblock被改成了更具体的Mineblock挖矿函数,新增了Createblockchain函数和dbExists函数,用来判断数据库是否存在,只有当数据库中没有公链时才能创建新的区块链。

proofofwork.go

在proofofwork文件中,仅在prepareData时将Data换成了HashTransactions,在挖矿时不再打印Data部分,proofofwork.go完整代码如下:

package main

import (
	"bytes"
	"crypto/sha256"
	"fmt"
	"math"
	"math/big"
)

var (
	maxNonce = math.MaxInt64
)

const targetBits = 24

// ProofOfWork represents a proof-of-work
type ProofOfWork struct {
	block  *Block
	target *big.Int
}

// NewProofOfWork builds and returns a ProofOfWork
func NewProofOfWork(b *Block) *ProofOfWork {
	target := big.NewInt(1)
	target.Lsh(target, uint(256-targetBits))

	pow := &ProofOfWork{b, target}

	return pow
}

func (pow *ProofOfWork) prepareData(nonce int) []byte {
	data := bytes.Join(
		[][]byte{
			pow.block.PrevBlockHash,
			pow.block.HashTransactions(),
			IntToHex(pow.block.Timestamp),
			IntToHex(int64(targetBits)),
			IntToHex(int64(nonce)),
		},
		[]byte{},
	)

	return data
}

// Run performs a proof-of-work
func (pow *ProofOfWork) Run() (int, []byte) {
	var hashInt big.Int
	var hash [32]byte
	nonce := 0

	fmt.Printf("Mining a new block")
	for nonce < maxNonce {
		data := pow.prepareData(nonce)

		hash = sha256.Sum256(data)
		// fmt.Printf("\r%x", hash)
		hashInt.SetBytes(hash[:])

		if hashInt.Cmp(pow.target) == -1 {
			break
		} else {
			nonce++
		}
	}
	// fmt.Print("\n\n")

	return nonce, hash[:]
}

// Validate validates block's PoW
func (pow *ProofOfWork) Validate() bool {
	var hashInt big.Int

	data := pow.prepareData(pow.block.Nonce)
	hash := sha256.Sum256(data)
	hashInt.SetBytes(hash[:])

	isValid := hashInt.Cmp(pow.target) == -1

	return isValid
}

cli.go

cli.go文件随底层的一些变动,做出相应的业务逻辑改变,变动主要用于实现命令行操作,不涉及区块链的逻辑:

package main

import (
	"flag"
	"fmt"
	"log"
	"os"
	"strconv"
)

// CLI responsible for processing command line arguments
type CLI struct{}

func (cli *CLI) createBlockchain(address string) {
	bc := CreateBlockchain(address)
	bc.db.Close()
	fmt.Println("Done!")
}

func (cli *CLI) getBalance(address string) {
	bc := NewBlockchain(address)
	defer bc.db.Close()

	balance := 0
	UTXOs := bc.FindUTXO(address)

	for _, out := range UTXOs {
		balance += out.Value
	}

	fmt.Printf("Balance of '%s': %d\n", address, balance)
}

func (cli *CLI) printUsage() {
	fmt.Println("Usage:")
	fmt.Println("  getbalance -address ADDRESS - Get balance of ADDRESS")
	fmt.Println("  createblockchain -address ADDRESS - Create a blockchain and send genesis block reward to ADDRESS")
	fmt.Println("  printchain - Print all the blocks of the blockchain")
	fmt.Println("  send -from FROM -to TO -amount AMOUNT - Send AMOUNT of coins from FROM address to TO")
}

func (cli *CLI) validateArgs() {
	if len(os.Args) < 2 {
		cli.printUsage()
		os.Exit(1)
	}
}

func (cli *CLI) printChain() {
	// TODO: Fix this
	bc := NewBlockchain("")
	defer bc.db.Close()

	bci := bc.Iterator()

	for {
		block := bci.Next()

		fmt.Printf("Prev. hash: %x\n", block.PrevBlockHash)
		fmt.Printf("Hash: %x\n", block.Hash)
		pow := NewProofOfWork(block)
		fmt.Printf("PoW: %s\n", strconv.FormatBool(pow.Validate()))
		fmt.Println()

		if len(block.PrevBlockHash) == 0 {
			break
		}
	}
}

func (cli *CLI) send(from, to string, amount int) {
	bc := NewBlockchain(from)
	defer bc.db.Close()

	tx := NewUTXOTransaction(from, to, amount, bc)
	bc.MineBlock([]*Transaction{tx})
	fmt.Println("Success!")
}

// Run parses command line arguments and processes commands
func (cli *CLI) Run() {
	cli.validateArgs()

	getBalanceCmd := flag.NewFlagSet("getbalance", flag.ExitOnError)
	createBlockchainCmd := flag.NewFlagSet("createblockchain", flag.ExitOnError)
	sendCmd := flag.NewFlagSet("send", flag.ExitOnError)
	printChainCmd := flag.NewFlagSet("printchain", flag.ExitOnError)

	getBalanceAddress := getBalanceCmd.String("address", "", "The address to get balance for")
	createBlockchainAddress := createBlockchainCmd.String("address", "", "The address to send genesis block reward to")
	sendFrom := sendCmd.String("from", "", "Source wallet address")
	sendTo := sendCmd.String("to", "", "Destination wallet address")
	sendAmount := sendCmd.Int("amount", 0, "Amount to send")

	switch os.Args[1] {
	case "getbalance":
		err := getBalanceCmd.Parse(os.Args[2:])
		if err != nil {
			log.Panic(err)
		}
	case "createblockchain":
		err := createBlockchainCmd.Parse(os.Args[2:])
		if err != nil {
			log.Panic(err)
		}
	case "printchain":
		err := printChainCmd.Parse(os.Args[2:])
		if err != nil {
			log.Panic(err)
		}
	case "send":
		err := sendCmd.Parse(os.Args[2:])
		if err != nil {
			log.Panic(err)
		}
	default:
		cli.printUsage()
		os.Exit(1)
	}

	if getBalanceCmd.Parsed() {
		if *getBalanceAddress == "" {
			getBalanceCmd.Usage()
			os.Exit(1)
		}
		cli.getBalance(*getBalanceAddress)
	}

	if createBlockchainCmd.Parsed() {
		if *createBlockchainAddress == "" {
			createBlockchainCmd.Usage()
			os.Exit(1)
		}
		cli.createBlockchain(*createBlockchainAddress)
	}

	if printChainCmd.Parsed() {
		cli.printChain()
	}

	if sendCmd.Parsed() {
		if *sendFrom == "" || *sendTo == "" || *sendAmount <= 0 {
			sendCmd.Usage()
			os.Exit(1)
		}

		cli.send(*sendFrom, *sendTo, *sendAmount)
	}
}

main.go

在main.go中,我们将所有的操作有交给cli对象进行,原本旧main.go中的新建创世块操作,也放到了cli.go的逻辑中,所以只需要以下代码:

package main

func main() {
	bc := NewBlockchain()
	defer bc.db.Close()

	cli := CLI{bc}
	cli.Run()
}

utils.go

没有新的工具函数引入,utils.go文件不变。

在下一节,将实现区块链的地址机制,逐步完善整个区块链。

posted on 2019-10-30 15:46  东寻  阅读(1059)  评论(1编辑  收藏  举报