前缀和经典问题整理
1、一般形式 -- 区域和检索 - 数组不可变
class NumArray:
def __init__(self, nums: List[int]):
self.pre = [0]
for num in nums:
self.pre.append(self.pre[-1] + num)
####或者#####
self.pre = list(accumulate(nums, initial=0))
def sumRange(self, left: int, right: int) -> int:
return self.pre[right + 1] - self.pre[left]
2、经典问题 -- 连续数组
给定一个二进制数组 nums , 找到含有相同数量的 0 和 1 的最长连续子数组,并返回该子数组的长度。
class Solution:
def findMaxLength(self, nums: List[int]) -> int:
pre, m = 0, {0: -1}
maxl = 0
for i, num in enumerate(nums):
pre += 1 if num == 1 else -1
if m.get(pre, None) != None:
maxl = max(i - m[pre], maxl)
else:
m[pre] = i
return maxl
前后缀 -- 除自身以外数组的乘积
class Solution:
def productExceptSelf(self, nums: List[int]) -> List[int]:
right = [1] * (len(nums) + 1)
for i in reversed(range(len(nums))):
right[i] = right[i + 1] * nums[i]
left = 1
res = [1] * (len(nums))
for i in range(len(nums)):
res[i] = left * right[i + 1]
left *= nums[i]
return res
前缀异或 -- 形成两个异或相等数组的三元组数目
class Solution:
def countTriplets(self, arr: List[int]) -> int:
n = len(arr)
s = [0]
for val in arr:
s.append(s[-1] ^ val)
cnt, total = Counter(), Counter()
ans = 0
for k in range(n):
if s[k + 1] in cnt:
ans += cnt[s[k + 1]] * k - total[s[k + 1]]
cnt[s[k]] += 1
total[s[k]] += k
return ans
求一个数组两两乘积之和
res, s = 0, sum(nums)
for num in nums:
s -= num
res += s * num
return res
类似的有 -- 统计梯形的数目 I
class Solution: def countTrapezoids(self, points: List[List[int]]) -> int: m = defaultdict(int) for x, y in points: m[y] += 1 res = 0 arr = list(m.keys()) pre = 0 for i in range(len(arr)): pre = (pre + m[arr[i]] * (m[arr[i]] - 1) // 2) % (10 ** 9 + 7) for i in range(len(arr)): pre = (pre - m[arr[i]] * (m[arr[i]] - 1) // 2) % (10 ** 9 + 7) a2 = m[arr[i]] * (m[arr[i]] - 1) // 2 % (10 ** 9 + 7) res = (res + a2 * pre) % (10 ** 9 + 7) return res
枚举分母,对商进行前缀求和 -- 向下取整数对和

class Solution:
def sumOfFlooredPairs(self, nums: List[int]) -> int:
m = Counter(nums)
maxl = max(nums)
pre = [0] * (maxl + 1)
for i in range(1, maxl + 1):
pre[i] = pre[i - 1] + m[i]
res = 0
for num in m:
i = 1
while i * num <= maxl:
if maxl < (i + 1) * num - 1:
res = (res + (pre[-1] - pre[i * num - 1]) * i * m[num]) % (10 ** 9 + 7)
else:
res = (res + (pre[(i + 1) * num - 1] - pre[i * num - 1]) * i * m[num]) % (10 ** 9 + 7)
i += 1
return res
前缀最值 -- 有序三元组中的最大值 II
class Solution:
def maximumTripletValue(self, nums: List[int]) -> int:
n = len(nums)
right = [0] * (n + 1)
i = n - 1
for num in reversed(nums):
right[i] = max(right[i + 1], num)
i -= 1
left, maxl = 0, 0
for i, num in enumerate(nums):
maxl = max(maxl, (left - num) * right[i + 1])
left = max(left, num)
return maxl
3、二维数组前缀和和差分
(1)二维数组前缀和 -- 二维区域和检索 - 矩阵不可变

代码:
class NumMatrix:
def __init__(self, matrix: List[List[int]]):
self.sum_matrix = [[0] * len(matrix[0]) for _ in matrix]
for i in range(len(matrix)):
row_sum = 0
for j in range(len(matrix[i])):
row_sum += matrix[i][j]
self.sum_matrix[i][j] = self.sum_matrix[i - 1][j] + row_sum
def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int:
res = self.sum_matrix[row2][col2]
if col1 > 0: res -= self.sum_matrix[row2][col1 - 1]
if row1 > 0: res -= self.sum_matrix[row1 - 1][col2]
if col1 > 0 and row1 > 0: res += self.sum_matrix[row1 - 1][col1 - 1]
return res
(2)二维数组差分 -- 子矩阵元素加 1
class Solution:
def rangeAddQueries(self, n: int, queries: List[List[int]]) -> List[List[int]]:
d = [[0] * (n + 1) for _ in range(n + 1)]
for r1, c1, r2, c2 in queries:
d[r1][c1] += 1
d[r2 + 1][c2 + 1] += 1
d[r1][c2 + 1] -= 1
d[r2 + 1][c1] -= 1
ans = [[0] * (n + 1) for _ in range(n + 1)]
for i, row in enumerate(d[:n]):
for j, x in enumerate(row[:n]):
ans[i + 1][j + 1] = ans[i + 1][j] + ans[i][j + 1] - ans[i][j] + x
del ans[0]
for row in ans:
del row[0]
return ans
数组差分可以看成函数微分,数组前缀和可以看成函数积分,所以差分数组的前缀和就是原数组
4、字符串哈希 + 前缀和 -- 不同的循环子字符串
class Solution:
def distinctEchoSubstrings(self, text: str) -> int:
n = len(text)
mod, base = 10**9 + 7, 31
pre, mul = [0] * (n + 1), [1] + [0] * n
for i in range(1, n + 1):
pre[i] = (pre[i - 1] * base + ord(text[i - 1])) % mod
mul[i] = mul[i - 1] * base % mod
def get_hash(l, r):
return (pre[r + 1] - pre[l] * mul[r - l + 1] % mod + mod) % mod
seen = {x: set() for x in range(n)}
ans = 0
for i in range(n):
for j in range(i + 1, n):
l = j - i
if j + l <= n:
hash_left = get_hash(i, j - 1)
if hash_left not in seen[l - 1] and hash_left == get_hash(j, j + l - 1):
ans += 1
seen[l - 1].add(hash_left)
return ans
5、进阶问题
(1)个数前缀和 -- 查询差绝对值的最小值
class Solution:
def minDifference(self, nums: List[int], queries: List[List[int]]) -> List[int]:
pre = [[0] for _ in range(101)]
for n in nums:
for i in range(101):
if i == n:
pre[i].append(pre[i][-1] + 1)
else:
pre[i].append(pre[i][-1])
res = []
for f, t in queries:
last, minl = None, inf
for i in range(101):
if pre[i][t + 1] - pre[i][f] > 0:
if last is not None:
minl = min(i - last, minl)
last = i
res.append(minl if minl != inf else -1)
return res
(2)统计回文子序列数目
class Solution:
def countPalindromes(self, s: str) -> int:
suf = [0] * 10
suf2 = [0] * 100
for d in map(int, reversed(s)):
for j, c in enumerate(suf):
suf2[d * 10 + j] += c
suf[d] += 1
ans = 0
pre = [0] * 10
pre2 = [0] * 100
for d in map(int, s):
suf[d] -= 1
for j, c in enumerate(suf):
suf2[d * 10 + j] -= c # 撤销
ans += sum(c1 * c2 for c1, c2 in zip(pre2, suf2)) # 枚举所有字符组合
for j, c in enumerate(pre):
pre2[d * 10 + j] += c
pre[d] += 1
return ans % (10 ** 9 + 7)
(3)统计上升四元组
class Solution:
def countQuadruplets(self, nums: List[int]) -> int:
n = len(nums)
more = [[0] * n for _ in range(n + 1)]
less = [[0] * n for _ in range(n + 1)]
for j in reversed(range(n)):
for k in reversed(range(j + 1, n)):
if nums[j] < nums[k]:
more[k][j] = more[k + 1][j] + 1
else:
more[k][j] = more[k + 1][j]
for k in range(n):
for j in range(k):
if nums[k] > nums[j]:
less[j][k] = less[j - 1][k] + 1
else:
less[j][k] = less[j - 1][k]
res = 0
for k in range(n):
for j in range(k):
if nums[k] < nums[j]:
res += less[j][k] * more[k][j]
return res
(4)前缀和 + 哈希 + 同余 -- 统计美丽子字符串 II
class Solution:
def beautifulSubstrings(self, s: str, k: int) -> int:
k = self.sqrt(k * 4)
cnt = Counter([(0, 0)])
ans = pre_sum = 0
for i, c in enumerate(s):
pre_sum += 1 if c in "aeiou" else -1
p = ((i + 1) % k, pre_sum)
ans += cnt[p]
cnt[p] += 1
return ans
def sqrt(self, n: int) -> int:
res = 1
i = 2
while i * i <= n:
i2 = i * i
while n % i2 == 0:
res *= i
n //= i2
if n % i == 0:
res *= i
n //= i
i += 1
if n > 1:
res *= n
return res
(5)二维矩阵压缩到一维 + 前缀和 + 哈希 -- 矩形区域不超过 K 的最大数值和
class Solution:
def numSubmatrixSumTarget(self, matrix: List[List[int]], target: int) -> int:
m, n = len(matrix), len(matrix[0])
res = 0
for i in range(1, n + 1):
presum = [0] * (m + 1)
for j in range(i, n + 1):
a = 0
d = defaultdict(int, {0:1})
for fixed in range(1, m + 1):
presum[fixed] += matrix[fixed-1][j-1]
a += presum[fixed]
res += d[a - target]
d[a] += 1
return res
浙公网安备 33010602011771号