PID
例如,使用控制器使一锅水的温度保持在50℃,小于50℃就让它加热,大于50度就断电不就行了?
没错,在要求不高的情况下,确实可以这么干,如果换一种说法,你就知道问题出在哪里了。
如果控制对象是一辆汽车呢?要是希望汽车的车速保持在50km/h不动,这种方法就存在问题了。
设想一下,假如汽车的定速巡航电脑在某一时间测到车速是45km/h,它立刻命令发动机:加速!
结果,发动机那边突然来了个100%全油门,嗡的一下汽车急加速到了60km/h,这时电脑又发出命令:刹车!结果乘客吐......
所以,在大多数场合中,用“开关量”来控制一个物理量就显得比较简单粗暴了,有时候是无法保持稳定的,因为单片机、传感器不是无限快的,采集、控制需要时间。
而且,控制对象具有惯性,比如将热水控制器拔掉,它的“余热”即热惯性可能还会使水温继续升高一小会。
此时就需要使用PID控制算法了。
P、I、D分开说
1、P比例增益
P比例控制考虑当前误差,比如水温,有它现在的当前值,也有我们期望的目标值。
当两者差距不大时,就让加热器“轻轻地”加热一下。
要是因为某些原因,温度降低了很多,就让加热器“稍稍用力”加热一下。
要是当前温度比目标温度低得多,就让加热器“开足马力”加热,尽快让水温到达目标附近。
这就是P的作用,跟开关控制方法相比,是不是“温文尔雅”了很多。
实际写程序时,就让偏差(目标减去当前)与调节装置的“调节力度”,建立一个一次函数的关系,就可以实现最基本的“比例”控制了~
P越大,调节作用越激进,P调小会让调节作用更保守。
若你正在制作一个平衡车,有了P的作用,你会发现,平衡车在平衡角度附近来回“狂抖”,比较难稳住。
2、D微分增益
有了P的作用,不难发现,只有P好像不能让平衡车站起来,水温也控制得晃晃悠悠,好像整个系统不是特别稳定,总是在“抖动”。
设想有一个弹簧:现在在平衡位置上,拉它一下,然后松手,这时它会震荡起来,因为阻力很小,它可能会震荡很长时间,才会重新停在平衡位置。
请想象一下:要是把上图所示的系统浸没在水里,同样拉它一下 :这种情况下,重新停在平衡位置的时间就短得多。
此时需要一个控制作用,让被控制的物理量的“变化速度”趋于0,即类似于“阻尼”的作用。
因为,当比较接近目标时,P的控制作用就比较小了,越接近目标,P的作用越温柔,有很多内在的或者外部的因素,使控制量发生小范围的摆动。
D的作用就是让物理量的速度趋于0,只要什么时候,这个量具有了速度,D就向相反的方向用力,尽力刹住这个变化。
D参数越大,向速度相反方向刹车的力道就越强,如果是平衡小车,加上P和D两种控制作用,如果参数调节合适,它应该可以站起来了。
3、I积分增益
还是以热水为例,假如有个人把加热装置带到了非常冷的地方,开始烧水了,需要烧到50℃。
在P的作用下,水温慢慢升高,直到升高到45℃时,他发现了一个不好的事情:天气太冷,水散热的速度,和P控制的加热的速度相等了。
这可怎么办?
P兄这样想:我和目标已经很近了,只需要轻轻加热就可以了。
D兄这样想:加热和散热相等,温度没有波动,我好像不用调整什么。
于是,水温永远地停留在45℃,永远到不了50℃。
根据常识,我们知道,应该进一步增加加热的功率,可是增加多少该如何计算呢?
前辈科学家们想到的方法是真的巧妙,设置一个积分量I,只要偏差存在,就不断地对偏差进行积分(累加),并反应在调节力度上。
这样一来,即使45℃和50℃相差不是太大,但是随着时间的推移,只要没达到目标温度,这个积分量就不断增加,系统就会慢慢意识到:还没有到达目标温度,该增加功率啦!
到了目标温度后,假设温度没有波动,积分值就不会再变动,这时,加热功率仍然等于散热功率,但是,温度是稳稳的50℃。
————————————————
版权声明:本文为CSDN博主「不脱发的程序猿」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/m0_38106923/article/details/109545445
————————————————
版权声明:本文为CSDN博主「不脱发的程序猿」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/m0_38106923/article/details/109545445

浙公网安备 33010602011771号