洛谷 P3270 - [JLOI2016]成绩比较(容斥原理+组合数学+拉格朗日插值)

题面传送门

考虑容斥。我们记 \(a_i\) 为钦定 \(i\) 个人被 B 神碾压的方案数,如果我们已经求出了 \(a_i\) 那么一遍二项式反演即可求出答案,即 \(ans=\sum\limits_{i=k}^{n-1}a_i(-1)^{i-k}\dbinom{i}{k}\),于是现在问题转化为怎样求 \(a_i\)。首先我们肯定要从另外 \(n-1\) 个学生中选出这 \(i\) 个,方案数 \(\dbinom{n-1}{i}\),其次,根据“碾压”的定义,这 \(i\) 个学生在任何一门学科中的分数都 \(\le\) B 神的分数,也就是说对于任何一门学科 \(j\),都有这 \(i\) 个学生属于被 B 神吊打的 \(n-r_j\) 个学生中,故对于每一门学科,被被 B 神吊打的 \(n-r_j\) 个学生中有 \(i\) 个学生是确定的,我们只需另从 \(n-i-1\) 个学生中选出 \(n-r_j-i\) 即可,方案数为 \(\dbinom{n-i-1}{n-i-r_j}\),再其次,对每门学科我们要确定有多少种可能的分数,我们枚举 B 神的分数 \(l\),那么对于被 B 神吊打的 \(n-r_j\) 个学生,每个人都有 \(l\) 种可能的分数,方案数 \(l^{n-r_j}\),对于吊打 B 神的 \(r_j-1\) 个学生,每个人都有 \(u_j-l\) 种可能的分数,方案数 \((u_j-l)^{r_j-1}\),因此我们有:

\[a_i=\dbinom{n-1}{i}\prod\limits_{j=1}^m\dbinom{n-i-1}{n-i-r_j}\sum\limits_{l=1}^{u_j}l^{n-r_j}(u_j-l)^{r_j-1} \]

由于这题 \(u_i\) 很大,直接算显然无法通过,不过注意到后面那坨东西 \(\sum\limits_{l=1}^{u_j}l^{n-r_j}(u_j-l)^{r_j-1}\) 是与 \(i\) 严格无关的,因此考虑将这东西预处理出来。怎么预处理呢,考虑将这东西用二项式定理展开变个形,具体来说:

\[\begin{aligned} &\sum\limits_{l=1}^{u_j}l^{n-r_j}(u_j-l)^{r_j-1}\\ =&\sum\limits_{l=1}^{u_j}l^{n-r_j}\sum\limits_{t=0}^{r_j-1}u_j^t(-l)^{r_j-1-t}\dbinom{r_i-1}{t}\\ =&\sum\limits_{t=0}^{r_j-1}u_j^t\dbinom{r_i-1}{t}\sum\limits_{l=1}^{u_j}l^{n-r_j}(-l)^{r_j-1-t}\\ =&\sum\limits_{t=0}^{r_j-1}u_j^t\dbinom{r_i-1}{t}(-1)^{r_i-1-t}\sum\limits_{l=1}^{u_j}l^{n-1-t} \end{aligned} \]

芜湖~好了,前面枚举复杂度显然不会爆,后面那东西是自然数 \(k\) 次幂之和的形式,可以拉格朗日插值求出,于是复杂度就降到了 \(n^2m\),可以通过此题。

const int MAXN=100;
const int MOD=1e9+7;
int qpow(int x,int e){
	int ret=1;
	for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
	return ret;
}
int n,m,k,u[MAXN+5],r[MAXN+5],s[MAXN+5],f[MAXN+5],fac[MAXN+5],ifac[MAXN+5];
void init_fac(int mx){
	for(int i=(fac[0]=ifac[0]=ifac[1]=1)+1;i<=mx;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
	for(int i=1;i<=mx;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*ifac[i]%MOD;
}
int binom(int n,int k){
	if(n<0||k<0||n<k) return 0;
	return 1ll*fac[n]*ifac[k]%MOD*ifac[n-k]%MOD;
}
int sum[MAXN+5],pre[MAXN+5],suf[MAXN+5];
int calc(int n,int k){
	for(int i=1;i<=k+1;i++) sum[i]=(sum[i-1]+qpow(i,k))%MOD;
	pre[0]=n;for(int i=1;i<=k+1;i++) pre[i]=1ll*pre[i-1]*(n-i+MOD)%MOD;
	suf[k+2]=1;for(int i=k+1;~i;i--) suf[i]=1ll*suf[i+1]*(n-i+MOD)%MOD;
	int ans=0;
	for(int i=1;i<=k+1;i++){
		int mul=1ll*sum[i]*pre[i-1]%MOD*suf[i+1]%MOD*ifac[i]%MOD*ifac[k+1-i]%MOD;
		if((k+1-i)&1) ans=(ans-mul+MOD)%MOD;else ans=(ans+mul)%MOD;
	} return ans;
}
int main(){
	scanf("%d%d%d",&n,&m,&k);init_fac(n+1);
	for(int i=1;i<=m;i++) scanf("%d",&u[i]);
	for(int i=1;i<=m;i++) scanf("%d",&r[i]);
	for(int i=1;i<=m;i++) for(int l=0;l<r[i];l++){
		int mul=1ll*binom(r[i]-1,l)*qpow(u[i],l)%MOD*calc(u[i],n-1-l)%MOD;
		if((r[i]-1-l)&1) s[i]=(s[i]-mul+MOD)%MOD;else s[i]=(s[i]+mul)%MOD;
	} int ans=0;
	for(int i=k;i<n;i++){
		int mul=binom(n-1,i);
		for(int j=1;j<=m;j++) mul=1ll*mul*binom(n-i-1,n-r[j]-i)%MOD*s[j]%MOD;
		if((i-k)&1) ans=(ans-1ll*mul*binom(i,k)%MOD+MOD)%MOD;
		else ans=(ans+1ll*mul*binom(i,k)%MOD)%MOD;
	} printf("%d\n",ans);
	return 0;
}
posted @ 2021-04-18 12:33  tzc_wk  阅读(118)  评论(0)    收藏  举报