Codeforces 429E - Points and Segments(欧拉回路)
果然我不具备融会贯通的能力/ll
看到这样的设问我们可以很自然地联想到这道题,具体来说我们可以通过某种方式建出一张图,然后根据”每个点度都是偶数的图必然每个连通块都存在欧拉回路“这一条件构造出原图的欧拉回路进而求解答案。因此现在问题转化为如何构建出这样一张图出来。
首先一个非常直观的想法是对于每个区间新建一个左部点,对于数轴上每一个整点新建一个右部点,然后从每个区间表示的左部点向这段区间中所有整点表示的右部点连边,这样问题可以变为,对于每个右部点,与其相连的左部点中红点与蓝点的差的绝对值 \(\le 1\),不过注意到这样一来涉及与每个点相连的点 instead of 边,这是不好直接用欧拉回路求解的,因此我们必须迟早放弃这个想法(
不难发现,如果我们将所有染成红色的视作 \(+1\),染成蓝色视作 \(-1\),那么一个点符合 \(|r(x)-b(x)|\le 1\) 的要求当且仅当将所有覆盖它的所有线段权值之和为 \(-1,0\) 或 \(1\)。因此问题可以转化为,有 \(n\) 个区间,你要选择对于每一个区间,选择将区间中所有位置上的数 \(+1\) 或者 \(-1\),使得最终每个位置上的数的绝对值 \(\le 1\)。我们不妨先考虑一个弱化版,也就是所有点被覆盖次数恰好为偶数的情况,此时最终序列中每个数都应是 \(0\)。注意到这里涉及区间操作,而区间操作可以视作差分序列上的两个端点操作,也就是说对于一个区间 \([l,r]\),我们可以看作,你可以选择令 \(b_l\) 加 \(1\),\(b_{r+1}\) 减 \(1\),或者令 \(b_l\) 减 \(1\),\(b_{r+1}\) 加 \(1\),最后要使 \(b\) 序列每个元素都是 \(0\)。我们考虑从 \(l\) 向 \(r+1\) 连一条边,这样如果我们选择 \((l,r+1)\) 这条边从 \(l\) 指向 \(r+1\) 则会使 \(l\) 出度 \(+1\),\(r+1\) 入度 \(+1\),反之会使 \(l\) 入度 \(+1\),\(r+1\) 出度 \(+1\),这样最终序列 \(b\) 中所有元素都为 \(0\) 就自然地被转化为,每个点入度都等于出度,这样就自然地可以欧拉回路了。跑一遍欧拉回路,然后如果 \((l_i,r_i+1)\) 这条边由 \(l_i\) 指向 \(r_i+1\) 则令 \(i\) 的颜色为 \(0\),否则令 \(i\) 的颜色为 \(1\)。那么如果有的点覆盖次数不是偶数怎么办呢?如果 \(i\) 覆盖次数为奇数,那我们就手动添加一个区间 \([i,i]\),这样所有点覆盖次数都是偶数,就可以规约为前一种情况了。
注意,由于区间长度很大,需要离散化。具体来说按照 P3643 [APIO2016]划艇 的套路,将所有区间改写成一个左闭右开的区间,然后离散化一下即可将整个数轴拆成 \(\mathcal O(n)\) 个左闭右开的区间,那么显然每一个左闭右开的区间中所有点最终的权值都是一样的,因此我们只用取这个区间最左边的点作为该区间的代表点即可。
时间复杂度 \(\mathcal O(n\log n)\),因为要离散化。
const int MAXN=1e5;
int n,l[MAXN+5],r[MAXN+5],key[MAXN*2+5],cnt=0,uni[MAXN*2+5],num=0;
int d[MAXN*2+5],hd[MAXN*2+5],nxt[MAXN*6+5],to[MAXN*6+5],ec=1;
void adde(int u,int v){/*printf("adde %d %d\n",u,v);*/to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
int dir[MAXN*3+5],vis[MAXN*2+5],now[MAXN*2+5];
void dfs(int x){
// printf("dfs %d\n",x);
vis[x]=1;
for(int &e=now[x];e;e=nxt[e]) if(!~dir[e>>1]){
dir[e>>1]=e&1;dfs(to[e]);
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d",&l[i],&r[i]);++r[i];
key[++cnt]=l[i];key[++cnt]=r[i];
} sort(key+1,key+cnt+1);key[0]=-1;
for(int i=1;i<=cnt;i++) if(key[i]^key[i-1]) uni[++num]=key[i];
for(int i=1;i<=n;i++){
l[i]=lower_bound(uni+1,uni+num+1,l[i])-uni;
r[i]=lower_bound(uni+1,uni+num+1,r[i])-uni;
d[l[i]]++;d[r[i]]--;adde(l[i],r[i]);adde(r[i],l[i]);
}
for(int i=1;i<=num;i++){
d[i]+=d[i-1];
if(d[i]&1) adde(i,i+1),adde(i+1,i);
}
memset(dir,-1,sizeof(dir));
for(int i=1;i<=num;i++) now[i]=hd[i];
for(int i=1;i<=num;i++) if(!vis[i]) dfs(i);
for(int i=1;i<=n;i++) printf("%d%c",dir[i]," \n"[i==n]);
return 0;
}

浙公网安备 33010602011771号