Codeforces 1513F - Swapping Problem(分类讨论+乱搞)
首先我看到这题的第一反应是分类讨论+数据结构,即枚举其中一个被交换的位置然后用树状数组或类似的数据结构维护另一个决策的贡献,细节似乎挺多的,大概硬刚个大分类讨论上去也可以?不过显然此题有更简便的方法所以这种方法就没写了。
我们来观察一下这个“交换”有什么性质,这个绝对值有点烦,我们不妨将所有 \(i\) 分为两类:\(a_i<b_i\) 和 \(a_i>b_i\)。至于 \(a_i=b_i\) 的情况,显然它进行交换之后答案不会更优,所以我们姑且就不用考虑它了。
一个 observation 是对于满足 \(a_i<b_i,a_j<b_j\) 的情况,交换 \(i,j\) 的情况肯定是不优的,具体证明就考虑将每个 \(a_i,b_i\) 看作一个区间 \([a_i,b_i]\),对两个区间 \([a_i,b_i],[a_j,b_j]\) 的位置关系分情况讨论:
- 相离,不妨设 \(a_i\le b_i\le a_j\le b_j\),那么交换前贡献为 \(b_i-a_i+b_j-a_j\),交换后贡献为 \(b_j-a_i+a_j-b_i\),前者 \(\le\) 后者。
- 相交,不妨设 \(a_i\le a_j\le b_i\le b_j\),那么交换前贡献为 \(b_i-a_i+b_j-a_j\),交换后贡献为 \(b_j-a_i+b_j-a_i\),前者 \(=\) 后者。
- 内含,不妨设 \(a_i\le a_j\le b_j\le b_i\),那么交换前贡献为 \(b_i-a_i+b_j-a_j\),交换后贡献为 \(b_j-a_i+a_j-b_i\),前者 \(=\) 后者。
也就是说我们只会选择 \(a_i<b_i\) 和 \(a_j>b_j\) 的 \(i,j\) 进行交换,那么这个贡献该怎么算呢?还是将它们看作一个个区间 \([a_i,b_i]\) 和 \([b_j,a_j]\),我们从变化量的角度入手,即记交换后贡献为 \(W'\),原来的贡献为 \(W\),转而讨论 \(W'-W\) 的最小值,这个也可以分三种情况讨论:
- 相离,不妨设 \(a_i\le b_i\le b_j\le a_j\),那么交换前贡献为 \(a_j-b_j+b_i-a_i\),交换后贡献为 \(a_j-b_i+b_j-a_i\),变化量 \(\Delta=2(b_j-b_i)\),不难发现这恒为非负,也就是说我们肯定不会交换这两个值,故我们可姑且将这种情况的贡献看作 \(0\)。
- 相交,不妨设 \(a_i\le b_j\le b_i\le a_j\),那么交换前贡献为 \(a_j-b_j+b_i-a_i\),交换后贡献为 \(a_j-b_i+b_j-a_i\),\(\Delta=2(b_j-b_i)\)
- 内含,不妨设 \(a_i\le b_j\le a_j\le b_i\),那么交换前贡献为 \(a_j-b_j+b_i-a_i\),交换后贡献为 \(b_j-a_i+b_i-a_j\),\(\Delta=2(b_j-a_j)\)
不难发现,对于上面的情况,变化量的最小可能值恰为 \([a_i,b_i]\) 和 \([b_j,a_j]\) 的交集的长度,于是随便排个序 two pointers 乱搞搞即可,时间复杂度 \(n\log n\)
1A,就 nm 爽
const int MAXN=2e5;
int n,a[MAXN+5],b[MAXN+5],ans=0;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) scanf("%d",&b[i]);
vector<int> v1,v2;
for(int i=1;i<=n;i++){
if(a[i]<b[i]) v1.pb(i);
if(a[i]>b[i]) v2.pb(i);
}
sort(v1.begin(),v1.end(),[](int x,int y){return a[x]<a[y];});
sort(v2.begin(),v2.end(),[](int x,int y){return b[x]<b[y];});
for(int i=0,j=0,mx=0;i<v1.size();i++){
while(j<v2.size()&&b[v2[j]]<=a[v1[i]]){
chkmax(mx,a[v2[j]]);j++;
} chkmax(ans,min(mx-a[v1[i]],b[v1[i]]-a[v1[i]]));
}
for(int i=0,j=0,mx=0;i<v2.size();i++){
while(j<v1.size()&&a[v1[j]]<=b[v2[i]]){
chkmax(mx,b[v1[j]]);j++;
} chkmax(ans,min(mx-b[v2[i]],a[v2[i]]-b[v2[i]]));
} ll sum=0;
for(int i=1;i<=n;i++) sum+=abs(a[i]-b[i]);
printf("%lld\n",sum-(ans<<1));
return 0;
}

浙公网安备 33010602011771号