UVA - 10382 Watering Grass(几何)
题意:有一个矩形,n个圆。已知矩形的长宽和圆的半径,问最少需多少个圆将矩形完全覆盖。
分析:
1、首先求圆与矩形的长的交点,若无交点,则一定不能对用最少的圆覆盖矩形有贡献。
2、如果两个圆与矩形相交所得的线段重合,那这两个圆一定能把矩形在两线段并集的那部分所覆盖。问题转化为用圆与矩形相交所得的线段覆盖矩形的长。
3、按线段左端点排序,对于某个已选择的线段a,求它后面满足b.L <= a.R的线段b的b.R的最大值,依次类推。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define lowbit(x) (x & (-x))
const double eps = 1e-8;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 10000 + 10;
const int MAXT = 10000 + 10;
using namespace std;
struct Node{
double pos, r;
double L, R;
bool operator < (const Node& rhs)const{
return L < rhs.L;
}
}num[MAXN];
int main(){
int n;
double l, w;
while(scanf("%d%lf%lf", &n, &l, &w) == 3){
double pos, r;
int cnt = 0;
for(int i = 0; i < n; ++i){
scanf("%lf%lf", &pos, &r);
double tmpl = r * r - w * w / 4.0;
if(dcmp(tmpl, 0.0) <= 0) continue;
++cnt;
num[cnt].pos = pos;
num[cnt].r = r;
num[cnt].L = pos - sqrt(tmpl);
num[cnt].R = pos + sqrt(tmpl);
}
sort(num + 1, num + cnt + 1);
int ans = 0;
double st = 0.0;
bool ok = false;
for(int i = 1; i <= cnt; ++i){
if(dcmp(st, l) >= 0){
ok = true;
break;
}
++ans;
if(num[i].L > st){
ok = false;
break;
}
double ma = -1.0;
int j;
for(j = i; j <= cnt; ++j){
if(dcmp(num[j].L, st) <= 0){
ma = max(ma, num[j].R);
}
else break;
}
st = ma;
i = j - 1;
}
if(dcmp(st, l) >= 0){
ok = true;
}
if(ok){
printf("%d\n", ans);
}
else{
printf("-1\n");
}
}
return 0;
}

浙公网安备 33010602011771号