UVA - 1630 Folding(串折叠)(dp---记忆化搜索)
题意:给出一个由大写字母组成的长度为n(1<=n<=100)的串,“折叠”成一个尽量短的串。折叠可以嵌套。多解时可输出任意解。
分析:
1、dp[l][r]为l~r区间可折叠成的最短串的长度。
2、ans[l][r]为l~r区间可折叠成的最短串。
3、先判断当前研究的串是否能折叠,若不能折叠,再枚举分割线,折叠分隔后可折叠的串,以使处理后的串最短。
#pragma comment(linker, "/STACK:102400000, 102400000")
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define Min(a, b) ((a < b) ? a : b)
#define Max(a, b) ((a < b) ? b : a)
const double eps = 1e-8;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 100 + 10;
const int MAXT = 10000 + 10;
using namespace std;
string s;
string ans[MAXN][MAXN];
int dp[MAXN][MAXN];
int dfs(int l, int r){
if(dp[l][r] != -1) return dp[l][r];
int len = r - l + 1;
if(len == 1){//串的长度为1,不能折叠也不能枚举分割线
ans[l][r] = s[l];
return dp[l][r] = 1;
}
ans[l][r] = s.substr(l, len);
int tmp = len;//以下判断串是否能折叠
for(int i = 1; i <= len / 2; ++i){//枚举循环周期的长度
if(len % i) continue;
bool ok = true;
for(int j = l + i; j <= r; j += i){//判断串是否以周期为i循环
for(int k = 0; k < i; ++k){
if(s[l + k] != s[j + k]){
ok = false;
break;
}
}
if(!ok) break;
}
if(ok){//该串可以按周期为i折叠
char t[10];
sprintf(t, "%d", len / i);//循环串的长度
dfs(l, l + i - 1);//循环串自身可能是可折叠的
string str(t);
str += "(" + ans[l][l + i - 1] + ")";
int nowlen = (int)str.size();
if(nowlen < tmp){//若折叠后的长度小于不折叠,则更新ans[l][r]
tmp = nowlen;
ans[l][r] = str;
}
}
}
if(tmp != len) return dp[l][r] = tmp;//如果可折叠
for(int i = l; i < r; ++i){//该串不可折叠,枚举分割线
int x = dfs(l, i);
int y = dfs(i + 1, r);
if(x + y < tmp){
tmp = x + y;
ans[l][r] = ans[l][i] + ans[i + 1][r];
}
}
return dp[l][r] = tmp;
}
int main(){
while(cin >> s){
memset(dp, -1, sizeof dp);
int len = (int)s.size();
dfs(0, len - 1);
printf("%s\n", ans[0][len - 1].c_str());
}
return 0;
}

浙公网安备 33010602011771号