多线程进阶
JUC
1. 什么是JUC
java,util下面的包,线程,锁相关的类
2. 线程和进程
线程和进程
进程:一个程序,资源分配的单位
线程:java默认有2个线程,主线程和GC线程
java是否真的能开启线程? 并不行(本地方法c++库)
public synchronized void start() {
if (this.threadStatus != 0) {
throw new IllegalThreadStateException();
} else {
this.group.add(this);
boolean started = false;
try {
this.start0();
started = true;
} finally {
try {
if (!started) {
this.group.threadStartFailed(this);
}
} catch (Throwable var8) {
}
}
}
}
//本地方法,java无法直接操作硬件
private native void start0();
并发和并行
并发:多线程操作同一个资源
- CPU一个核,快速交替
并发:多个人一起走
- CPU多核,多个核心同时运行
//查看CPU核数
Runtime.getRuntime().availableProcessors()
并发编程:充分利用CPU的资源
线程状态
public static enum State {
//新建
NEW,
//运行
RUNNABLE,
//阻塞
BLOCKED,
//等待
WAITING,
//超时等待
TIMED_WAITING,
//死亡
TERMINATED;
private State() {
}
}
wait/sleep区别
-
来自不同的类
wait=>Object
sleep=>Thread
-
关于锁的释放
wait---释放锁
sleep---不释放锁
-
使用范围
wait---必须在同步代码块中使用
sleep---可以任何地方
-
捕获异常
wait不需要捕获异常
sleep需要捕获异常
3. Lock锁
传统Synchronized
Lock接口
公平锁:先来后到
非公平锁:可以插队(默认)
Synchronized和Lock的区别
- Synchronized是内置的关键字,Lock是一个类
- Synchronized 无法判断获取锁的状态,Lock可以判断
- Synchronized 会自动释放锁,Lock需要手动释放锁
- Synchronized 线程1(获取锁,直接阻塞),线程2(死等解锁),Lock锁不一定一直等
- Synchronized 可重入锁,不可以中断,非公平;Lock,可重入锁,可以判断锁,非公平(可以自己设置)
- Synchronized 适合锁少量的代码同步问题,Lock 适合锁大量的同步问题
锁是什么,如何判断所得是谁
4. 生产者和消费者
public class A {
public static void main(String[] args) {
Data data = new Data();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "A").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "B").start();
}
}
class Data{
private int number = 0;
public synchronized void increment() throws InterruptedException {
if (number != 0) {
//等待
this.wait();
}
number++;
System.out.println(Thread.currentThread().getName()+ "=>"+ number);
//通知其他线程
this.notifyAll();
}
public synchronized void decrement() throws InterruptedException {
if (number == 0) {
//等待
this.wait();
}
number--;
System.out.println(Thread.currentThread().getName()+ "=>"+ number);
//通知其他线程
this.notifyAll();
}
}
问题存在,A,B,C,D四个线程---虚假唤醒
if 改为while判断
public class A {
public static void main(String[] args) {
Data data = new Data();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "A").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "B").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "C").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "D").start();
}
}
class Data{
private int number = 0;
public synchronized void increment() throws InterruptedException {
while (number != 0) {
//等待
this.wait();
}
number++;
System.out.println(Thread.currentThread().getName()+ "=>"+ number);
//通知其他线程
this.notifyAll();
}
public synchronized void decrement() throws InterruptedException {
while (number == 0) {
//等待
this.wait();
}
number--;
System.out.println(Thread.currentThread().getName()+ "=>"+ number);
//通知其他线程
this.notifyAll();
}
}
JUC的生产者消费者
通过Lock找到Condition方法
Synchronized---wait和notify
Lock---await和signal
代码实现
package com.liu;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class B {
public static void main(String[] args) {
Data2 data = new Data2();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "A").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "B").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "C").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "D").start();
}
}
class Data2 {
private int number = 0;
Lock lock = new ReentrantLock();
Condition condition = lock.newCondition();
public void increment() throws InterruptedException {
try {
lock.lock();
while (number != 0) {
//等待
condition.await();
}
number++;
System.out.println(Thread.currentThread().getName()+ "=>"+ number);
//通知其他线程
condition.signalAll();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public synchronized void decrement() throws InterruptedException {
try {
lock.lock();
while (number == 0) {
//等待
condition.await();
}
number--;
System.out.println(Thread.currentThread().getName()+ "=>"+ number);
//通知其他线程
condition.signalAll();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
Condition--精准的通知和唤醒线程
package com.liu;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class C {
public static void main(String[] args) {
Data3 data3 = new Data3();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
data3.printA();
}
}, "A").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
data3.printB();
}
}, "B").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
data3.printC();
}
}, "C").start();
}
}
class Data3 {
private Lock lock = new ReentrantLock();
private Condition condition1 = lock.newCondition();
private Condition condition2 = lock.newCondition();
private Condition condition3 = lock.newCondition();
private int number = 1;
public void printA() {
lock.lock();
try {
while (number != 1) {
condition1.await();
}
System.out.println(Thread.currentThread().getName()+ "=>AAAAAA");
number = 2;
condition2.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void printB() {
lock.lock();
try {
while (number != 2) {
condition2.await();
}
System.out.println(Thread.currentThread().getName()+ "=>BBBBB");
number = 3;
condition3.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void printC() {
lock.lock();
try {
while (number != 3) {
condition3.await();
}
System.out.println(Thread.currentThread().getName() + "=>CCCCC");
number = 1;
condition1.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
5. 8锁现象
小结
//1.标准情况下,两个线程哪个先打印--顺序执行 //2.第一个延迟4秒,两个线程谁先打印--顺序执行 //3.增加一个普通方法,先执行哪个?--普通方法 //4.两个对象,谁先执行---时间快的执行 //5.一个对象增加两个静态同步方法--顺序执行 //6.两个对象,静态方法---顺序执行 //7.一个对象普通的同步方法和静态同步方法---普通同步方法 //8.两个对象普通同步方法和静态同步方法---普通同步方法
new this 一个具体的对象
class 唯一的模板
6. 集合类不安全
ArrayList安全性
import java.util.ArrayList;
import java.util.List;
import java.util.UUID;
import java.util.Vector;
import java.util.concurrent.CopyOnWriteArrayList;
public class ListTest {
public static void main(String[] args) {
List<String> list = new CopyOnWriteArrayList<>();
//并发下的ArrayList是不安全的
//解决方案
//1.List<String> list = new Vector<>();
//2.List<String> list = Collections.synchronizedList(new ArrayList<>());
//3.List<String> list = new CopyOnWriteArrayList<>();
//CopyOnWrite 写入时复制,COW 优化策略
//在写入的适合避免覆盖,避免数据问题
//读写分离
//CopyOnWriteArrayList 比Vector好在哪里:第一个读的时候不加锁,读的速度较快,jdk11将add方法从Lock变成Synchronized
for (int i = 1; i <= 10; i++) {
new Thread(() -> {
list.add(UUID.randomUUID().toString());
System.out.println(list);
}).start();
}
}
}
Set
import java.util.Collections;
import java.util.HashSet;
import java.util.Set;
import java.util.UUID;
import java.util.concurrent.CopyOnWriteArraySet;
public class SetTest {
public static void main(String[] args) {
// Set<String> set = new HashSet<>();
// Set<String> set = Collections.synchronizedSet(new HashSet<>());
Set<String> set = new CopyOnWriteArraySet<>();
for (int i = 1; i <= 30; i++) {
new Thread(() -> {
set.add(UUID.randomUUID().toString());
System.out.println(set);
}).start();
}
}
}
hashSet的底层
public HashSet() {
this.map = new HashMap();
}
//add set 本质就是map key 是无法重复
public boolean add(E e) {
return this.map.put(e, PRESENT) == null;
}
private static final Object PRESENT = new Object();
hashMap
package com.liu.unsafe;
import javax.swing.plaf.synth.SynthOptionPaneUI;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.UUID;
import java.util.concurrent.ConcurrentHashMap;
public class MapTest {
public static void main(String[] args) {
//map
// Map<String, String> map= new HashMap<>(16, 0.75f);
//加载因子,默认容量
// Map<String, String> map = Collections.synchronizedMap(new HashMap<>());
Map<String, String> map = new ConcurrentHashMap<>();
for (int i = 1; i < 30; i++) {
new Thread(() -> {
map.put(Thread.currentThread().getName(), UUID.randomUUID().toString());
System.out.println(map);
}).start();
}
}
}
7.Callable
- 可以有返回值
- 可以抛出异常
- 方法不同
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;
public class CallableTest {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//new Thread(new Runnable()).start();
//new Thread(new FutureTask<V>()).start();
//new Thread(new FutureTask<V>(Callable)).start();
MyThread myThread = new MyThread();
//适配类
FutureTask futureTask = new FutureTask(myThread);
new Thread(futureTask, "A").start();
new Thread(futureTask, "B").start();//结果缓存
Integer o = (Integer) futureTask.get();//结果阻塞
System.out.println(o);
}
}
class MyThread implements Callable<String> {
@Override
public String call() throws Exception {
System.out.println("call()");
return "1024";
}
}
8.常用辅助类
8.1 CountDownLatch---减法计数器
import java.util.concurrent.CountDownLatch;
//计数器
public class CountDownLatchTest {
public static void main(String[] args) throws InterruptedException {
//总数为6
CountDownLatch countDownLatch = new CountDownLatch(6);
for (int i = 1; i <= 6; i++) {
new Thread(() -> {
System.out.println(Thread.currentThread().getName() + "go out");
countDownLatch.countDown();
}, String.valueOf(i)).start();
}
countDownLatch.await();//等待计数器归零,然后向下执行
System.out.println("close");
}
}
原理:
countDownLatch.countDown();//数量减1
countDownLatch.await();//等待计数器归零,向下执行
每次线程调用计数器进行减一,直到计数器归零。
8.2 CyclicBarrier---加法计数器
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
public class CyclicBarrierTest {
public static void main(String[] args) {
CyclicBarrier cyclicBarrier = new CyclicBarrier(7, () -> {
System.out.println("成功");
});
for (int i = 1; i <= 7; i++) {
final int temp = i;
new Thread(()-> {
System.out.println(Thread.currentThread().getName() + "第" + temp + "个");
try {
cyclicBarrier.await();//等待
} catch (InterruptedException | BrokenBarrierException e) {
e.printStackTrace();
}
}).start();
}
}
}
8.3 Semaphore---信号量
import java.util.concurrent.Semaphore;
import java.util.concurrent.TimeUnit;
public class SemaphoreTest {
public static void main(String[] args) {
Semaphore semaphore = new Semaphore(6);
for (int i = 1; i <= 6; i++) {
new Thread(() -> {
//acquire() 得到
try {
semaphore.acquire();
System.out.println(Thread.currentThread().getName() + "得到位置");
TimeUnit.SECONDS.sleep(2);
System.out.println(Thread.currentThread().getName() + "离开位置");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
semaphore.release();//release() 释放
}
}, String.valueOf(i)).start();
}
}
}
原理
semaphore.acquire() 获得,如果满就等待释放
semaphore.release() 释放,当前的信号量释放+1,唤醒等待的线程
作用:多个共享资源互斥的作用,并发限流,控制最大的线程数量
9. 读写锁
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
public class ReadWriterLockDemo {
public static void main(String[] args) {
MyCacheLock myCache = new MyCacheLock();
for (int i = 1; i <= 5; i++) {
final int temp = i;
new Thread(() -> {
myCache.put(temp + "", temp + "");
}, String.valueOf(i)).start();
}
for (int i = 1; i <= 5; i++) {
final int temp = i;
new Thread(() -> {
myCache.get(temp + "");
}, String.valueOf(i)).start();
}
}
}
class MyCache {
private volatile Map<String, Object> map = new HashMap<>();
//存,写
public void put(String key, Object value) {
System.out.println(Thread.currentThread().getName() + "写入" + key);
map.put(key, value);
System.out.println(Thread.currentThread().getName() + "写入完成");
}
//取,读
public void get(String key) {
System.out.println(Thread.currentThread().getName() + "取出" + key);
map.get(key);
System.out.println(Thread.currentThread().getName() + "取出完成");
}
}
class MyCacheLock {
private volatile Map<String, Object> map = new HashMap<>();
//读写锁,更加细粒度的控制
private ReentrantReadWriteLock reentrantReadWriteLock = new ReentrantReadWriteLock();
//存,写入的时候,只希望同时只有一个线程写
public void put(String key, Object value) {
reentrantReadWriteLock.writeLock().lock();
try {
System.out.println(Thread.currentThread().getName() + "写入" + key);
map.put(key, value);
System.out.println(Thread.currentThread().getName() + "写入完成");
}catch (Exception e) {
e.printStackTrace();
}finally {
reentrantReadWriteLock.writeLock().unlock();
}
}
//取,读
public void get(String key) {
reentrantReadWriteLock.readLock().lock();
try {
System.out.println(Thread.currentThread().getName() + "取出" + key);
map.get(key);
System.out.println(Thread.currentThread().getName() + "取出完成");
} catch (Exception e) {
e.printStackTrace();
} finally
reentrantReadWriteLock.readLock().unlock();
}
}
}
10. 阻塞队列
BlockingQueue
什么情况下使用阻塞队列:多线程并发处理,线程池
使用队列
四组API
| 方式 | 抛出异常 | 有返回值,不抛出异常 | 阻塞等待 | 超时等待 |
|---|---|---|---|---|
| 添加 | add | offer() | put | offer(,) |
| 移除 | remove | poll() | take | poll(,) |
| 判断队列首 | element | peek |
//抛出异常
public static void test1() {
ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
System.out.println(blockingQueue.add("a"));
System.out.println(blockingQueue.add("b"));
System.out.println(blockingQueue.add("c"));
//抛出异常java.lang.IllegalStateException: Queue full
//System.out.println(blockingQueue.add("d"));
System.out.println(blockingQueue.remove());
System.out.println(blockingQueue.remove());
System.out.println(blockingQueue.remove());
//抛出异常java.util.NoSuchElementException
//System.out.println(blockingQueue.remove());
}
//有返回值,不抛出异常
public static void test2() {
ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
System.out.println(blockingQueue.offer("a"));
System.out.println(blockingQueue.offer("b"));
System.out.println(blockingQueue.offer("c"));
//返回false,不抛出异常
//System.out.println(blockingQueue.offer("d"));
System.out.println("============");
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
//取出null值,不抛出异常
//System.out.println(blockingQueue.poll());
}
//等待,阻塞(一直阻塞)
public static void test3() throws InterruptedException {
ArrayBlockingQueue<Object> blockingQueue = new ArrayBlockingQueue<>(3);
blockingQueue.put("a");
blockingQueue.put("b");
blockingQueue.put("c");
//队列位置满了,一直等待
//blockingQueue.put("d");
System.out.println(blockingQueue.take());
System.out.println(blockingQueue.take());
System.out.println(blockingQueue.take());
//没有这个元素,一直阻塞
//System.out.println(blockingQueue.take());
}
//等待,阻塞(超时时间)
public static void test4() throws InterruptedException {
ArrayBlockingQueue<Object> blockingQueue = new ArrayBlockingQueue<>(3);
blockingQueue.offer("a");
blockingQueue.offer("b");
blockingQueue.offer("c");
//等待超过2秒退出
//blockingQueue.offer("d", 2, TimeUnit.SECONDS);
System.out.println("=======");
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
//等待超过2秒退出
//blockingQueue.poll(2, TimeUnit.SECONDS);
}
SynchronousQueue同步队列
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.TimeUnit;
/**
* 同步队列,SynchronousQueue不存储元素
* put进去之后,只能拿出来才能继续放
*/
public class SynchronousQueueDemo {
public static void main(String[] args) {
SynchronousQueue<String> blockingQueue = new SynchronousQueue<>();
new Thread(() -> {
try {
System.out.println(Thread.currentThread().getName() + " put 1");
blockingQueue.put("1");
System.out.println(Thread.currentThread().getName() + " put 2");
blockingQueue.put("2");
System.out.println(Thread.currentThread().getName() + " put 3");
blockingQueue.put("3");
} catch (Exception e) {
e.printStackTrace();
}
}, "T1").start();
new Thread(() -> {
try {
TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName() + "=" + blockingQueue.take());
TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName() + "=" + blockingQueue.take());
TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName() + "=" + blockingQueue.take());
} catch (Exception e) {
e.printStackTrace();
}
}, "T2").start();
}
}
11.线程池
线程池:三大方法,7大参数,4种拒绝策略
池化技术
程序运行的本质:占用系统的资源,优化资源的使用=>池化技术
线程池的好处:线程复用,可以控制最大并发数,管理线程
线程池:三大方法
import java.util.concurrent.Executor;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class Demo1 {
public static void main(String[] args) {
// ExecutorService threadPool = Executors.newSingleThreadExecutor();//单个线程
// ExecutorService threadPool = Executors.newFixedThreadPool(5);//固定大小的线程池
ExecutorService threadPool = Executors.newCachedThreadPool();//可伸缩的线程池
try {
for (int i = 0; i < 100; i++) {
//线程池创建线程
threadPool.execute(() -> {
System.out.println(Thread.currentThread().getName() + "ok");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
threadPool.shutdown();
}
}
}
7大参数
源码分析
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
//本质调用ThreadPoolExecutor
public ThreadPoolExecutor(
int corePoolSize,//核心线程池大小
int maximumPoolSize,//最大核心线程池大小
long keepAliveTime,//超时时间
TimeUnit unit,//超时单位
BlockingQueue<Runnable> workQueue,//阻塞队列
ThreadFactory threadFactory,//线程工厂
RejectedExecutionHandler handler//拒绝策略
) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
手动创建一个线程池
import java.util.concurrent.*;
public class Demo1 {
public static void main(String[] args) {
//自定义线程池
ExecutorService threadPool = new ThreadPoolExecutor(
2,
5,
3,
TimeUnit.SECONDS,
new LinkedBlockingDeque<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.DiscardOldestPolicy()//队列满了,尝试去和最早的竞争,不抛出异常
);
try {
//最大承载:Deque + max
//超过RejectedExecutionException
for (int i = 1; i <= 9; i++) {
//线程池创建线程
threadPool.execute(() -> {
System.out.println(Thread.currentThread().getName() + "ok");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
threadPool.shutdown();
}
}
}
四种拒绝策略
//ThreadPoolExecutor.AbortPolicy()//队列满了,不处理抛出异常
//ThreadPoolExecutor.CallerRunsPolicy()//哪来的去哪里
//ThreadPoolExecutor.DiscardPolicy()//队列满了,丢掉任务,不会抛出异常
//ThreadPoolExecutor.DiscardOldestPolicy()//队列满了,尝试去和最早的竞争,不抛出异常
小结和拓展
package com.liu.pool;
import java.util.concurrent.*;
public class Demo1 {
public static void main(String[] args) {
//自定义线程池
//最大线程如何定义
//1.CPU密集型 多少核CPU定义为多少
//2.IO密集型 大于耗IO的线程
//获取CPU和核数
System.out.println(Runtime.getRuntime().availableProcessors());
ExecutorService threadPool = new ThreadPoolExecutor(
2,
5,
3,
TimeUnit.SECONDS,
new LinkedBlockingDeque<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.DiscardOldestPolicy()//队列满了,尝试去和最早的竞争,不抛出异常
);
try {
//最大承载:Deque + max
//超过RejectedExecutionException
for (int i = 1; i <= 9; i++) {
//线程池创建线程
threadPool.execute(() -> {
System.out.println(Thread.currentThread().getName() + "ok");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
threadPool.shutdown();
}
}
}
12.四大函数式接口
函数式接口:只有一个方法的接口
@FunctionalInterface
public interface Runnable {
public abstract void run();
}
//简化编程模型
//foreach(消费者函数式接口)
代码测试
public interface Function<T, R> {
R apply(T t);
}
import java.util.function.Function;
//Function接口,有一个参数,有一个输出,可以使用Lambda表达式
public class Demo01 {
public static void main(String[] args) {
// Function function = new Function<String, String>() {
// @Override
// public String apply(String s) {
// return s;
// }
// };
Function<String, String> function = (str) -> {return str;};
System.out.println(function.apply("asd"));
}
}
断定型接口:有一个输入参数,返回值只能是布尔值
代码测试
public interface Predicate<T> {
boolean test(T t);
}
import java.util.function.Predicate;
/**
* 断定型接口,有一个输入参数,返回值只能是布尔值
*/
public class Demo02 {
public static void main(String[] args) {
//判断字符串是否为空
// Predicate<String> predicate = new Predicate<String>() {
// @Override
// public boolean test(String str) {
// return str.isEmpty();
// }
// };
Predicate<String> predicate = String::isEmpty;
System.out.println(predicate.test(""));
}
}
Consumer:消费型接口,只有输入,没有返回
public interface Consumer<T> {
void accept(T t);
]
import java.util.function.Consumer;
/**
* Consumer消费型接口:只有输入,没有返回
*/
public class Demo03 {
public static void main(String[] args) {
// Consumer<String> consumer = new Consumer<String>() {
// @Override
// public void accept(String s) {
// System.out.println(s);
// }
// };
Consumer<String> consumer = System.out::println;
consumer.accept("afsad");
}
}
Supplier:供给型接口
public interface Supplier<T> {
T get();
}
import java.util.function.Supplier;
/**
* Supplier供给型接口:没有输入参数,有返回值
*/
public class Demo04 {
public static void main(String[] args) {
// Supplier supplier = new Supplier<Integer>() {
// @Override
// public Integer get() {
// System.out.println("get()");
// return 1024;
// }
// };
Supplier supplier = () -> {
return 1024;
};
System.out.println(supplier.get());
}
}
13.strean流式计算
流式计算
存储和计算--->计算交给流去计算
import java.util.Arrays;
import java.util.Comparator;
import java.util.List;
public class Test {
public static void main(String[] args) {
User user1 = new User(1, "a", 21);
User user2 = new User(2, "b", 22);
User user3 = new User(3, "c", 23);
User user4 = new User(4, "d", 24);
User user5 = new User(6, "e", 25);
List<User> users = Arrays.asList(user1, user2, user3, user4, user5);
//计算交给stream流
//lambda表达式,链式编程,函数式接口,Stream流式计算
users.stream()
.filter(u -> {return u.getId() % 2 == 0;})
.filter(u -> {return u.getAge() > 23;})
.map(u -> {return u.getName().toUpperCase();})
.sorted(Comparator.naturalOrder())
.forEach(System.out::println);
}
}
14.ForkJoin
什么是ForkJoin
在jdk1.7之后出现,并发执行任务,提高效率
大任务分治归并
ForkJoin特点:工作窃取
里面维护的是双端队列
ForkJoin
import java.util.concurrent.RecursiveTask;
/**
* 求和计算的任务
* ForkJoin stream并行流
* 如何使用forkJoin
* 1.forkJoinPool 通过这个执行
* 2,计算任务,ForkJoinPool.execute(ForkJoinTask task)
* 3. 计算类继承ForkJoinTask
* ForkJoinTask中RecursiveAction(递归事件,没有返回值)
* ForkJoinTask中RecursiveTask(递归任务,有返回值)
*/
public class ForkJoinDemo extends RecursiveTask<Long> {
private Long start;
private Long end;
//临界值
private Long temp = 10000L;
public ForkJoinDemo(Long start, Long end) {
this.start = start;
this.end = end;
}
@Override
protected Long compute() {
if ((end - start) < temp) {
Long sum = 0L;
for (Long i = start; i <= end; i++) {
sum += i;
}
return sum;
} else { //forkJoin 递归
Long middle = (start + end) / 2;
ForkJoinDemo task1 = new ForkJoinDemo(start, middle);
task1.fork();//拆分任务,把任务压入线程队列
ForkJoinDemo task2 = new ForkJoinDemo(middle, end);
task2.fork();//拆分任务,把任务压入线程队列
return task1.join() + task2.join();
}
}
}
测试类
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.stream.LongStream;
public class Test {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//test1();//16009
//test2();//8569
//test3();//1350
}
public static void test1() {
Long sum = 0L;
long start = System.currentTimeMillis();
for (Long i = 1L; i < 10_0000_0000; i++) {
sum += i;
}
long end = System.currentTimeMillis();
System.out.println("sum=" + " 时间: " + (end - start));
}
public static void test2() throws ExecutionException, InterruptedException {
long start = System.currentTimeMillis();
ForkJoinPool forkJoinPool = new ForkJoinPool();
ForkJoinTask<Long> task = new ForkJoinDemo(0L, 10_0000_0000L);
ForkJoinTask<Long> submit = forkJoinPool.submit(task);//提交任务
Long sum = submit.get();
long end = System.currentTimeMillis();
System.out.println("sum=" + "时间" + (end - start));
}
public static void test3() {
long start = System.currentTimeMillis();
//Stream并行流
long sum = LongStream.rangeClosed(0L, 10_0000_0000L).parallel().reduce(0, Long::sum);
long end = System.currentTimeMillis();
System.out.println("sum=" + "时间" + (end - start));
}
}
15.异步回调
Future设计的初衷:对将来的某个事件的结果进行建模
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.util.concurrent.TimeUnit;
/**
* 异步调用 CompletableFuture
* // 异步执行
* // 成功回调
* // 失败回调
*/
public class Demo01 {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//没有返回值的异步回调
// CompletableFuture<Void> completableFuture = CompletableFuture.runAsync(() -> {
// try {
// TimeUnit.SECONDS.sleep(2);
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
// System.out.println(Thread.currentThread().getName() + "runAsync=>Void");
// });
// System.out.println("1111");
// completableFuture.get();
//有返回值的supplyAsync 异步回调
//
CompletableFuture<Integer> completableFuture = CompletableFuture.supplyAsync(() -> {
System.out.println(Thread.currentThread().getName() + "supplyAsync=>Integer");
int i = 10 / 0;
return 1024;
});
System.out.println(completableFuture.whenComplete((t, u) -> {
System.out.println("t=>" + t);//正常的返回结果
System.out.println("u=>" + u);//错误的信息
}).exceptionally((e) -> {
System.out.println(e.getMessage());
return 233;//获取到错误的返回结果
}).get());
}
}
16. JMM
Volatile理解
Volatile是Java虚拟机提供的轻量级同步机制
- 保证可见性
- 不保证原子性
- 禁止指令重排
什么是JMM
JMM:java内存模型,不存在的东西,是一个约定
关于JMM的一些同步的约定:
- 线程解锁前,必须把共享变量立刻刷回主存
- 线程加锁前,必须读取主存中的最新值到工作内存中
- 加锁和解锁是同一把锁
线程 工作内存,主内存
8种操作:
- 加锁---lock
- 读主存数据---read
- 加载主存数据到工作内存---load
- 执行引擎使用工作内存数据---use
- 执行引擎更新工作内存---assign
- 工作内存传送到主存---store
- 数据写入主存---write
- 解锁---unlock
问题:
17. Volatile
保证可见性
import java.util.concurrent.TimeUnit;
public class JMMDemo {
//不加volatile程序死循环
//加volatile程序直接停止
private volatile static int num = 0;
public static void main(String[] args) throws InterruptedException {
new Thread(() -> { //线程不可知主线程
while (num == 0) {
}
}).start();
TimeUnit.SECONDS.sleep(1);
num = 1;
System.out.println(num);
}
}
不保证原子性
原子性:不可分割
线程A在执行任务的时候,不能被打扰,也不能被分割。
public class VDemo02 {
private volatile static int num = 0;
//volatile不保证原子性
public static void add() {
num++;
}
public static void main(String[] args) {
for (int i = 1; i <= 20; i++) {
new Thread(() -> {
for (int j = 0; j < 1000; j++) {
add();
}
}).start();
}
while (Thread.activeCount() > 2) {
Thread.yield();
}
System.out.println(Thread.currentThread().getName() + " " + num);
}
}
如果不加lock和synchronized,如何保证原子性
使用原子类解决
import java.util.concurrent.atomic.AtomicInteger;
public class VDemo02 {
//使用原子类
private volatile static AtomicInteger num = new AtomicInteger();
//volatile不保证原子性
public static void add() {
//num++;//不是原子性操作
num.getAndIncrement();
}
public static void main(String[] args) {
for (int i = 1; i <= 20; i++) {
new Thread(() -> {
for (int j = 0; j < 1000; j++) {
add();
}
}).start();
}
while (Thread.activeCount() > 2) {
Thread.yield();
}
System.out.println(Thread.currentThread().getName() + " " + num);
}
}
这些类的底层都是操作系统挂钩,内存中修改值,Unsafe类
指令重排
计算机并不是按照你的程序顺序执行
源代码-->编译器优化的重排-->指令并行也可能会重排-->内存系统也会重排-->执行
处理器在进行指令重排的时候,考虑:数据之间的依赖问题
int x = 1;//1
int y = 2;//2
x = x + 5;//3
y = x * x;//4
我们期望的: 1234,实现可能是2134 2143
可能造成的影响:abxy这四个值默认为0
| 线程A | 线程B |
|---|---|
| x=a | y=b |
| b=1 | a=2 |
正常的结果:x=0;y=0;但是可能由于指令重排
| 线程A | 线程B |
|---|---|
| b=1 | a=2 |
| x=a | y=b |
指令重排的诡异结果:x=2;y=1;
volatile避免指令重排
内存屏障(CPU指令)。作用:
- 保证特定的操作的执行顺序
- 可以保证某些变量的内存可见性(volatile实现了可见性)
18. 单例模式
饿汉式,DCL懒汉式
DCL懒汉式
import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import java.lang.reflect.InvocationTargetException;
public class LazyMan {
private static boolean qinjiang = false;
private LazyMan() {
synchronized (LazyMan.class) {
if (qinjiang == false) {
qinjiang = true;
} else {
throw new RuntimeException("不要利用反射破坏单例");
}
}
System.out.println(Thread.currentThread().getName() + "ok");
}
//加volatile防止指令重排
private volatile static LazyMan lazyMan;
//单线程单例
// public static LazyMan getInstance() {
// if (lazyMan == null) {
// lazyMan = new LazyMan();
// }
// return lazyMan;
// }
//双重检测锁模式,DCL懒汉模式
public static LazyMan getInstance() {
if (lazyMan == null) {
synchronized (LazyMan.class) {
if (lazyMan == null) {
lazyMan = new LazyMan();//不是原子操作
/**
* 1. 分配内存空间
* 2. 执行构造方法,初始化空间
* 3. 把这个对象指向这个空间
*/
}
}
}
return lazyMan;// 此时lazyMan还没有完成构造
}
//多线程并发
// public static void main(String[] args) {
// for (int i = 0; i < 10; i++) {
// new Thread(() -> {
// LazyMan.getInstance();
// }).start();
// }
// }
//反射
public static void main(String[] args) throws NoSuchMethodException, IllegalAccessException, InvocationTargetException, InstantiationException, NoSuchFieldException {
//LazyMan instance = LazyMan.getInstance();
Field qinjiang = LazyMan.class.getDeclaredField("qinjiang");
qinjiang.setAccessible(true);
Constructor<LazyMan> declaredConstructor = LazyMan.class.getDeclaredConstructor(null);
declaredConstructor.setAccessible(true);
//两个都用构造器构造
LazyMan instance = declaredConstructor.newInstance();
qinjiang.set(instance, false);
LazyMan instance2 = declaredConstructor.newInstance();
System.out.println(instance);
System.out.println(instance2);
}
}
静态内部类
//静态内部类实现
public class Holder {
private Holder() {
}
private static Holder getInstance() {
return InnerClass.HOLDER;
}
public static class InnerClass {
private static final Holder HOLDER = new Holder();
}
}
单例不安全,反射
枚举
import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
//enum本身也是一个类
public enum EnumSingle {
INSTANCE;
public EnumSingle getInstance() {
return INSTANCE;
}
}
class Test {
public static void main(String[] args) throws NoSuchMethodException, IllegalAccessException, InvocationTargetException, InstantiationException {
EnumSingle instance1 = EnumSingle.INSTANCE;
Constructor<EnumSingle> declaredConstructor = EnumSingle.class.getDeclaredConstructor(String.class, int.class);
declaredConstructor.setAccessible(true);
EnumSingle instance2 = declaredConstructor.newInstance();
System.out.println(instance1);
System.out.println(instance2);
}
}
有参构造
枚举类型最终的反编译源码
public final class EnumSingle extends Enum {
public static EnumSingle[] values() {
return (EnumSingle[])$VALUES.clone();
}
public static EnumSingle valueof(String name) {
return (EnumSingle)Enum.valueof(EnumSingle, name);
}
private EnumSingle(String s, int i) {
super(s, i);
}
public EnumSingle getInstance() {
return INSTANCE;
}
public static final EnumSingle INSTANCE;
private static final EnumSingle $VALUES[];
static{
INSTANCE = new EnumSingle("INSTANCE", 0);
$VALUES = (new EnumSingle[] {
INSTANCE
});
}
}
19. 深入CAS
unSafe类
public class AtomicInteger extends Number implements java.io.Serializable {
private static final long serialVersionUID = 6214790243416807050L;
// setup to use Unsafe.compareAndSwapInt for updates
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
static {
try {
valueOffset = unsafe.objectFieldOffset
(AtomicInteger.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
}
private volatile int value;
//java 无法操作内存,调用c++ native进行操作内存
getAndIncrement
public final int getAndIncrement() {
return unsafe.getAndAddInt(this, valueOffset, 1);
}
//自旋锁
public final int getAndAddInt(Object var1, long var2, int var4) {
int var5;
do {
var5 = this.getIntVolatile(var1, var2);//期望内存地址中的值
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
//如果内存地址的是期望的内存地址的值,则进行+1操作
return var5;
}
CAS:比较当前工作内存中的值和主内存中的值,如果这个值是期望的,那么执行操作,如果不是一直循环
缺点:
- 循环会耗时
- 一次性只能保证一个共享变量的原子性
- ABA问题
CAS:ABA问题(狸猫换太子)
package com.liu.cas;
import java.util.concurrent.atomic.AtomicInteger;
public class CASDemo {
//CAS
public static void main(String[] args) {
AtomicInteger atomicInteger = new AtomicInteger(2020);
// 期望,更新
//public final boolean compareAndSet(int expect, int update)
// 获取期望值则更新,CAS是CPU并发原语
// 捣乱的线程
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger.get());
System.out.println(atomicInteger.compareAndSet(2021, 2020));
System.out.println(atomicInteger.get());
// 期望的线程
System.out.println(atomicInteger.compareAndSet(2020, 6666));
System.out.println(atomicInteger.get());
}
}
20. 原子引用
解决ABA问题,引入原子引用
带版本号的原子操作
Integer使用了对象缓存机制,默认范围是-128~127,推荐使用静态工厂方法valueOf获取对象实例,而不是new,因为valueOf使用缓存,而new一定会创建新的对象分配新的内存空间
package com.liu.cas;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicStampedReference;
public class CASDemo {
//CAS
public static void main(String[] args) {
//AtomicStampedReference注意,如果泛型是一个包装类,注意对象的引用问题
AtomicStampedReference<Integer> atomicStampedReference = new AtomicStampedReference<>(1, 1);
new Thread(() -> {
int stamp = atomicStampedReference.getStamp();
System.out.println("a1=>" + stamp);
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(atomicStampedReference.compareAndSet(1, 2,
atomicStampedReference.getStamp(), atomicStampedReference.getStamp() + 1));
System.out.println("a2=>" + atomicStampedReference.getStamp());
System.out.println(atomicStampedReference.compareAndSet(2, 1,
atomicStampedReference.getStamp(), atomicStampedReference.getStamp() + 1));
System.out.println("a3=>" + atomicStampedReference.getStamp());
}, "a").start();
new Thread(() -> {
int stamp = atomicStampedReference.getStamp();
System.out.println("b1=>" + stamp);
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(atomicStampedReference.compareAndSet(1, 6,
stamp, stamp + 1));
System.out.println("b1=>" + atomicStampedReference.getStamp());
}, "b").start();
}
}
21. 各种锁的分析
1.公平锁,非公平锁
公平锁:先来后到
非公平锁:可以插队(默认)
public ReentrantLock() {
sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
2. 可重入锁
3. 自旋锁
自定义自旋锁
package com.liu.lock;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicReference;
public class SpinLockDemo {
AtomicReference<Thread> atomicReference = new AtomicReference<>();
//加锁
public void myLock() {
Thread thread = Thread.currentThread();
System.out.println(Thread.currentThread().getName() + "===> mylock");
//自旋锁
while (!atomicReference.compareAndSet(null, thread)) {
}
}
//解锁
public void myUnLock() {
Thread thread = Thread.currentThread();
System.out.println(Thread.currentThread().getName() + "===> myUnlock");
atomicReference.compareAndSet(thread, null);
}
}
测试类
package com.liu.lock;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;
public class TestSpinLock {
public static void main(String[] args) throws InterruptedException {
// ReentrantLock reentrantLock = new ReentrantLock();
// reentrantLock.lock();
// reentrantLock.unlock();
//
SpinLockDemo lock = new SpinLockDemo();
new Thread(() -> {
lock.myLock();
try {
TimeUnit.SECONDS.sleep(3);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.myUnLock();
}
}, "T1").start();
TimeUnit.SECONDS.sleep(1);
new Thread(() -> {
lock.myLock();
try {
TimeUnit.SECONDS.sleep(3);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.myUnLock();
}
}, "T2").start();
}
}
4. 死锁
排除死锁
//产生死锁
package com.liu.lock;
import java.util.concurrent.TimeUnit;
public class DeadLockDemo {
public static void main(String[] args) {
String lockA = "A";
String lockB = "B";
new Thread(new myThread(lockA, lockB), "T1").start();
new Thread(new myThread(lockB, lockA), "T2").start();
}
}
class myThread implements Runnable{
private String lockA;
private String lockB;
public myThread(String lockA, String lockB) {
this.lockA = lockA;
this.lockB = lockB;
}
@Override
public void run() {
synchronized (lockA) {
System.out.println(Thread.currentThread().getName() + "lock" + lockA + "==>get" + lockB);
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (lockB) {
System.out.println(Thread.currentThread().getName() + "lock" + lockB + "==>get" + lockA);
}
}
}
}
解决死锁
- 使用
jsp -l定位进程号 - 使用
jstack 进程号找到死锁问题
1.日志
2.堆栈信息

浙公网安备 33010602011771号