以太网接口PCB布局布线

转载于:https://www.cnblogs.com/temo/p/7727106.html

 

我们现今使用的网络接口均为以太网接口,目前大部分处理器都支持以太网口。目前以太网按照速率主要包括10M、10/100M、1000M三种接口,10M应用已经很少,基本为10/100M所代替。目前我司产品的以太网接口类型主要采用双绞线的RJ45接口,且基本应用于工控领域,因工控领域的特殊性,所以我们对以太网的器件选型以及PCB设计相当考究。从硬件的角度看,以太网接口电路主要由MAC(Media Access Controlleroler)控制和物理层接口(Physical Layer,PHY)两大部分构成。大部分处理器内部包含了以太网MAC控制,但并不提供物理层接口,故需外接一片物理芯片以提供以太网的接入通道。面对如此复杂的接口电路,相信各位硬件工程师们都想知道该硬件电路如何在PCB上实现。

  下图 1以太网的典型应用。我们的PCB设计基本是按照这个框图来布局布线,下面我们就以这个框图详解以太网有关的布局布线要点。

                  图 1 以太网典型应用

1. 图 2网口变压器没有集成在网口连接器里的参考电路PCB布局、布线图,下面就以图 2介绍以太网电路的布局、布线需注意的要点。

           图 2变压器没有集成在网口连接器的电路PCB布局、布线参考

  a) RJ45和变压器之间的距离尽可能的短,晶振远离接口、PCB边缘和其他的高频设备、走线或磁性元件周围,PHY层芯片和变压器之间的距离尽可能短,但有时为了顾全整体布局,这一点可能比较难满足,但他们之间的距离最大约10~12cm,器件布局的原则是通常按照信号流向放置,切不可绕来绕去;

  b) PHY层芯片的电源滤波按照要芯片要求设计,通常每个电源端都需放置一个退耦电容,他们可以为信号提供一个低阻抗通路,减小电源和地平面间的谐振,为了让电容起到去耦和旁路的作用,故要保证退耦和旁路电容由电容、走线、过孔、焊盘组成的环路面积尽量小,保证引线电感尽量小;

  c) 网口变压器PHY层芯片侧中心抽头对地的滤波电容要尽量靠近变压器管脚,保证引线最短,分布电感最小;

  d) 网口变压器接口侧的共模电阻和高压电容靠近中心抽头放置,走线短而粗(≥15mil);

  e) 变压器的两边需要割地:即RJ45连接座和变压器的次级线圈用单独的隔离地,隔离区域100mil以上,且在这个隔离区域下没有电源和地层存在。这样做分割处理,就是为了达到初、次级的隔离,控制源端的干扰通过参考平面耦合到次级;

  f) 指示灯的电源线和驱动信号线相邻走线,尽量减小环路面积。指示灯和差分线要进行必要的隔离,两者要保证足够的距离,如有空间可用GND隔开;

  g) 用于连接GND和PGND的电阻及电容需放置地分割区域。

  2. 以太网的信号线是以差分对(Rx±、Tx±)的形式存在,差分线具有很强共模抑制能力,抗干扰能力强,但是如果布线不当,将会带来严重的信号完整性问题。下面我们来一一介绍差分线的处理要点:

  a) 优先绘制Rx±、Tx±差分对,尽量保持差分对平行、等长、短距,避免过孔、交叉。由于管脚分布、过孔、以及走线空间等因素存在使得差分线长易不匹配,时序会发生偏移,还会引入共模干扰,降低信号质量。所以,相应的要对差分对不匹配的情况作出补偿,使其线长匹配,长度差通常控制在5mil以内,补偿原则是哪里出现长度差补偿哪里;

  b) 当速度要求高时需对Rx±、Tx±差分对进行阻抗控制,通常阻抗控制在100Ω±10%;

  c) 差分信号终端电阻(49.9Ω,有的PHY层芯片可能没有)必须靠近PHY层芯片的Rx±、Tx±管脚放置,这样能更好的消除通信电缆中的信号反射;

  d) 差分线对上的滤波电容必须对称放置,否则差模可能转成共模,带来共模噪声,且其走线时不能有stub ,这样才能对高频噪声有良好的抑制能力。

3. 变压器集成在连接器的以太网电路的PCB布局、布线较不集成的相对简单很多,下图 3是采用一体化连接器的网口电路的PCB布局、布线参考图:

        图 3一体化连接器的网口PCB布局、布线参考图

  从上图可以看出,图 3和图 1的不同之处在于少了网口变压器,其它大体相同。不同之处主要体现在网口变压器已集成至连接器里,所以地平面无需进行分割处理,但我们依然需要将一体化连机器的外壳连接到连续的地平面上。

  以太网布局布线方面的要大致就这些,好的PCB布局布线不仅可以保证电路性能,还可以提高电路性能,笔者水平有限,不足之处欢迎指正交流。

 

附加:

  

千兆以太网pcb布线规则

 

以太网PHY需要通过以太网变压器,RJ45接口与外部设备进行连接,PHY与以太网变压器之间的接口称为MDI接口,也就是介质相关接口(这与MII是相对的)。百兆以太网模式下,MDI是2对差分线,千兆模式下是4对差分线。在部分PHY芯片的Datasheet或者应用手册中会给出MII/RMM/GMII/RGMII接口,MDI接口的等长规则,但是很少有厂家提到以太网变压器与RJ45之间的差分对等长规则。

 

在早期的产品设计中,无需特殊关照,RJ45与以太网变压器之间的差分对长度彼此相差不多,但是在近期的几款产品设计中,需要进行以太网防浪涌设计,导致差分对长度相差很多。由于对这部分等长规则不确定,也没有相应的资料可供参考,本人尝试过等长与不等长两种情况。

 

RJ45–以太网变压器差分对等长

 

下图中的PCb走线,如果左侧的差分对不进行蛇形走线,那么这两条差分线长度会相差很多。于是,为了不出问题,本人故意使两对差分线长度一致。细心的读者可能已经发现了,走线上出现了过孔,这是千兆以太网PCB走线的大忌之一,但是面对贴装的RJ45接口,就只能这样了。

 

 

RJ45–以太网变压器差分对不等长

再看下面的这张图,很容易看出,以太网变压器与RJ45之间的4对差分线一定不等长,当然,差分对内的两条线还是做了等长处理。

以上的两个案例都是本人亲自设计的,使用iperf进行以太网吞吐量测试(我没有条件使用SmartBits),结果如下:

 

Item

CPU内核

CPU占用率

吞吐量

等长

MIPS 74Kc

99%

340Mbps

不等长

PowerPC e500

36.5%

940Mbps

可想而知,如果不是受到CPU处理能力的影响,RJ45–以太网变压器之间的差分对等长与否不影响实际的吞吐量。当然,从这个表格中,可以明显看出PowerPC超强的网络处理能力,36.5%的CPU占用率只用到了一个核,另外一个核完全空闲。

今天在论坛上看了一下,比较靠谱的说法是这样的:

这4对MDI信号不需要做等长处理。为保险起见需要确认你的PHY是否具有差分对之间数据的自动对齐功能,以及PHY的FIFO有多深。

现在基本上可以确定,RJ45与以太网变压器之间的差分对不需要做等长处理。

 

 

 

 

 

 

posted on 2019-11-10 13:03  Red_Point  阅读(14801)  评论(0编辑  收藏  举报

导航