|
|
|
|
|
|
import cv2
import numpy as np
img = np.mat(np.zeros((300,300)))
cv2.imshow("test",img)
cv2.waitKey(0)
import cv2
import numpy as np
img = np.mat(np.zeros((300,300),dtype=np.uint8))
cv2.imshow("test",img)
cv2.waitKey(0)
import cv2
import numpy as np
image = np.mat(np.zeros((300,300)))
imageByteArray = bytearray(image)
print(imageByteArray)
imageBGR = np.array(imageByteArray).reshape(800,900)
cv2.imshow("cool",imageBGR)
cv2.waitKey(0)
import os
import cv2
import numpy as np
randomByteArray = bytearray(os.urandom(120000))
flatNumpyArray = np.array(randomByteArray).reshape(300,400)
cv2.imshow("cool",flatNumpyArray)
cv2.waitKey(0)
import cv2
import numpy as np
img = np.zeros((300,300))
img[0,0] = 255
cv2.imshow("img",img)
cv2.waitKey(0)
import cv2
import numpy as np
img = np.zeros((300,300))
img[:,10] = 255
img[10,:] = 255
cv2.imshow("img",img)
cv2.waitKey(0)
import cv2
import numpy as np
from scipy import ndimage
kernel33 = np.array([[-1,-1,-1],
[-1,8,-1],
[-1,-1,-1]])
kernel33_D = np.array([[1,1,1],
[1,-8,1],
[1,1,1]])
img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg",0)
linghtImg = ndimage.convolve(img,kernel33_D)
cv2.imshow("img",linghtImg)
cv2.waitKey()
![]()
import numpy as np
import cv2
from scipy import ndimage
img = cv2.imread("lena.jpg",0)
blurred = cv2.GaussianBlur(img,(11,11),0)
gaussImg = img - blurred
cv2.imshow("img",gaussImg)
cv2.waitKey()
![]()
import numpy as np
def convolve(dateMat,kernel):
m,n = dateMat.shape
km,kn = kernel.shape
newMat = np.ones(((m - km + 1),(n - kn + 1)))
tempMat = np.ones(((km),(kn)))
for row in range(m - km + 1):
for col in range(n - kn + 1):
for m_k in range(km):
for n_k in range(kn):
tempMat[m_k,n_k] = dateMat[(row + m_k),(col + n_k)] * kernel[m_k,n_k]
newMat[row,col] = np.sum(tempMat)
return newMat
dateMat = np.mat([
[1,2,1,2,0,1,0,1,1],
[0,3,1,1,0,0,1,0,1],
[1,2,1,0,2,1,1,0,0],
[2,2,0,1,1,1,1,1,0],
[3,1,1,0,1,1,0,0,1],
[1,0,1,1,1,0,0,1,1],
[1,1,1,1,0,1,1,1,1],
[1,0,1,1,0,1,0,1,0],
[0,1,1,1,1,2,0,1,0]
])
kernel = np.mat([
[1,0,1],
[0,-4,0],
[1,0,1]
])
newMat = convolve(dateMat,kernel)
print(np.shape(newMat))
print(newMat)
![]()
发表于
2019-02-07 22:08
吴裕雄
阅读( 303)
评论()
收藏
举报
|
|