摘要:
裴蜀定理 定义 裴蜀定理,又称贝祖定理(Bézout's lemma)。是一个关于最大公约数的定理。 其内容是: 设 \(a,b\) 是不全为零的整数,则存在整数 \(x,y\), 使得 \(ax+by=\gcd(a,b)\). 证明 若任何一个等于 \(0\), 则 \(\gcd(a,b)=a\) 阅读全文
posted @ 2023-11-01 23:48
tsqtsqtsq
阅读(233)
评论(0)
推荐(0)
摘要:
威尔逊定理 定义 威尔逊定理:对于素数 \(p\) 有 \((p-1)!\equiv -1\pmod p\)。 证明 我们知道在模奇素数 \(p\) 意义下,\(1,2,\dots ,p-1\) 都存在逆元且唯一,那么只需要将一个数与其逆元配对发现其乘积均为(同余意义下)\(1\),但前提是这个数的 阅读全文
posted @ 2023-11-01 23:47
tsqtsqtsq
阅读(50)
评论(0)
推荐(0)
摘要:
卢卡斯定理 引入 卢卡斯定理用于求解大组合数取模的问题,其中模数必须为素数。正常的组合数运算可以通过递推公式求解,但当问题规模很大,而模数是一个不大的质数的时候,就不能简单地通过递推求解来得到答案,需要用到卢卡斯定理。 定义 卢卡斯定理内容如下:对于质数 \(p\),有 \[\binom{n}{m} 阅读全文
posted @ 2023-11-01 23:47
tsqtsqtsq
阅读(60)
评论(0)
推荐(0)
摘要:
费马小定理 定义 若 \(p\) 是质数,且 \(\gcd(a, p) = 1\),则有 \(a^{p - 1} \equiv 1 \pmod{p}\)。 另一个形式:对于任意整数 \(a\),有 \(a^p \equiv a \pmod{p}\)。 证明 设一个质数为 \(p\),我们取一个不为 阅读全文
posted @ 2023-11-01 17:15
tsqtsqtsq
阅读(66)
评论(0)
推荐(0)

浙公网安备 33010602011771号