/*
凸包+最小圆覆盖
枚举任意3点找其最小覆盖圆
(当为钝角三角形时不是外接圆,而是以其最长边为直径的圆)。
当为外接圆时,半径公式为r=abc/4s;(推导为如下:
由正弦定理,a/sinA=b/sinB=c/sinC=2R,得sinA=a/(2R),
又三角形面积公式S=(bcsinA)/2,所以S=(abc)/(4R),故R=(abc)/(4S).
*/
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;
const int N = 105;
const double eps = 1e-8;
struct point {
int x;
int y;
}p[N], stack[N];
bool isZero(double x) {
return (x > 0 ? x : -x) < eps;
}
double dis(point A, point B) {
return sqrt((A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y));
}
double crossProd(point A, point B, point C) {
return (B.x-A.x)*(C.y-A.y) - (B.y-A.y)*(C.x-A.x);
}
int cmp(const void *a, const void *b) {
point *c = (point *)a;
point *d = (point *)b;
double k = crossProd(p[0], *c, *d);
if (k<eps || (isZero(k)&&dis(p[0], *c)>dis(p[0], *d))) return 1;
return -1;
}
int Graham(int n) {
int x = p[0].x;
int y = p[0].y;
int mi = 0;
for (int i=1; i<n; ++i) {
if (p[i].x<x || (p[i].x==x&&p[i].y<y)) {
x = p[i].x;
y = p[i].y;
mi = i;
}
}
point tmp = p[mi];
p[mi] = p[0];
p[0] = tmp;
qsort(p+1, n-1, sizeof(point), cmp);
p[n] = p[0];
for (int i=0; i<3; ++i) stack[i] = p[i];
int top = 2;
for (int i=3; i<n; ++i) {
if (crossProd(stack[top-1], stack[top], p[i])<=eps && top>=2) --top;
stack[++top] = p[i];
}
return top;
}
double max(double a, double b) {
return a > b ? a : b;
}
int main() {
int n;
while (scanf("%d", &n), n) {
for (int i=0; i<n; ++i) scanf ("%d%d", &p[i].x, &p[i].y);
if (n == 1) printf ("0.50\n");
else if (n == 2) printf ("%.2lf\n", dis(p[0], p[1])*0.50+0.50);
else {
int top = Graham(n);
double maxr = -1;
double a, b, c, r, s;
for (int i=0; i<top; ++i) {//枚举凸包上的点
for (int j=i+1; j<top; ++j) {
for (int k=j+1; k<=top; ++k) {
a = dis(stack[i], stack[j]);
b = dis(stack[i], stack[k]);
c = dis(stack[j], stack[k]);
if (a*a+b*b<c*c || a*a+c*c<b*b || b*b+c*c<a*a) r = max(max(a, b), c) / 2.0;//钝角
else {
s = fabs(crossProd(stack[i], stack[j], stack[k])) / 2.0;
r = a * b * c / (s * 4.0);//三角形外接圆公式
}
if (maxr < r) maxr = r;
}
}
}
printf ("%.2lf\n", maxr+0.5);
}
}
return 0;
}