[Lintcode] Graph Valid Tree
Graph Valid Tree
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.
Notice
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
Example
Given n = 5 and edges = [[0, 1], [0, 2], [0, 3], [1, 4]], return true.
Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]], return false.
解题思路:
这题的思路还是比较巧妙的,满足一个图是树的前提是:
1,一定是有点的个数减一条边,即 edges = n (of nodes) - 1.
2,从起始点开始bfs一定可以遍历所有的点。例如: 1
/ \
2 ---- 3 4
上图的情况就是4个点3条边,但是有一个点孤立,有一个环,这种就不是树,要排除这种情况。
思路:
1,要构建一个图。也就是要表达出点与边的关系。
2,遍历所有的点,记录所有点的入度。
3,用Queue + set/map BFS。
4, 输出结果:看能否bfs所有点,实现就是看: set.size() == n。
public class Solution { /** * @param n an integer * @param edges a list of undirected edges * @return true if it's a valid tree, or false */ public boolean validTree(int n, int[][] edges) { if (n == 0) { return false; } if (edges.length != n - 1) { return false; } Map<Integer, Set<Integer>> graph = constructGraph(n, edges); Queue<Integer> queue = new LinkedList<>(); Set<Integer> set = new HashSet<Integer>(); queue.offer(0); set.add(0); while (!queue.isEmpty()) { int node = queue.poll(); for (Integer neighbor : graph.get(node)) { if (set.contains(neighbor)) { continue; } set.add(neighbor); queue.offer(neighbor); } } return (set.size() == n); } private Map<Integer, Set<Integer>> constructGraph(int n, int[][] edges) { Map<Integer, Set<Integer>> graph = new HashMap<>(); // initial for (int i = 0; i < n; i++) { graph.put(i, new HashSet<Integer>()); } for (int i = 0; i < edges.length; i++) { int u = edges[i][0]; int v = edges[i][1]; graph.get(u).add(v); graph.get(v).add(u); } return graph; } }
浙公网安备 33010602011771号