pandas 面试题挑战三
11 把数据进行cut操作
现有数据ages如下
ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32, 101]
想按照[(18, 25] < (25, 35] < (35, 60] < (60, 100]]把该数据进行Categories 操作
解决办法:
bins = [18, 25, 35, 60, 100] cats = pd.cut(ages, bins) cats
输出
[(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (60.0, 100.0], (35.0, 60.0], (35.0, 60.0], (25.0, 35.0], NaN] Length: 13 Categories (4, interval[int64]): [(18, 25] < (25, 35] < (35, 60] < (60, 100]]
此时的cats是非常特殊的一类数据在pd中称为是Categories
Categories可以方便的通过pd.Series()转换为Series
ser_cats = pd.Series(cats)
ser_cats
输出:
0 (18.0, 25.0] 1 (18.0, 25.0] 2 (18.0, 25.0] 3 (25.0, 35.0] 4 (18.0, 25.0] 5 (18.0, 25.0] 6 (35.0, 60.0] 7 (25.0, 35.0] 8 (60.0, 100.0] 9 (35.0, 60.0] 10 (35.0, 60.0] 11 (25.0, 35.0] 12 NaN dtype: category Categories (4, interval[int64]): [(18, 25] < (25, 35] < (35, 60] < (60, 100]]
当然这个分类方式看起来不太符合人类的习惯。你可以通过设定labels让输出更加符合人类的习惯
group_names = ['Youth', 'YoungAdult', 'MiddleAged', 'Senior'] cats = pd.cut(ages, bins, labels=group_names) ser_cats = pd.Series(cats) ser_cats
输出
0 Youth 1 Youth 2 Youth 3 YoungAdult 4 Youth 5 Youth 6 MiddleAged 7 YoungAdult 8 Senior 9 MiddleAged 10 MiddleAged 11 YoungAdult 12 NaN dtype: category Categories (4, object): [Youth < YoungAdult < MiddleAged < Senior]
12 把数据进行qcut操作
现有数据ages如下:
ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32, 101]
要把数据按照[(19.999, 23.0] < (23.0, 31.0] < (31.0, 41.0] < (41.0, 101.0]]分成4类
也就是把数据的按照百分位[0, .25, .5, .75, 1.]进行分类
解决方法如下:
ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32, 101] cats = pd.qcut(ages, 4) #按[0, .25, .5, .75, 1.]分类 cats
输出
[(19.999, 23.0], (19.999, 23.0], (23.0, 31.0], (23.0, 31.0], (19.999, 23.0], ..., (41.0, 101.0], (41.0, 101.0], (31.0, 41.0], (31.0, 41.0], (41.0, 101.0]] Length: 13 Categories (4, interval[float64]): [(19.999, 23.0] < (23.0, 31.0] < (31.0, 41.0] < (41.0, 101.0]]
浙公网安备 33010602011771号