[HNOI2008]玩具装箱
f[i] =max( f[j]+ (s[i]-s[j] + i-j+1 )^2
设 a[i] =fi + si ,b[i] =s[i]+i+1
f[i] =max( f[j] + (a[i]-b[j])^2
=max{ f[j]+a[j]^2+b[j]^2 -2*a[j]*b[j])
然后斜率优化: 考虑2个点j k, j<k , func(j)<func(k) ,得到斜率的柿子
#include <iostream> #include <cmath> #include <cstdio> #include <algorithm> using namespace std; const int N =5e4+2; #define int long long int f[N]; int n,m, s[N]; int q[N],hh,tt; int a(int i){ return s[i]+i; } int b(int i){ return a(i)+m+1; } int Y(int i){ return f[i]+b(i)*b(i); } long double slope(int i,int j){ return 1.0*(Y(i)-Y(j))/(b(i)-b(j)); } signed main(){ cin>>n>>m; int i; for(i=1;i<=n;i++) cin>>s[i],s[i]+=s[i-1]; hh=tt=1; for(i=1;i<=n;++i){ while(hh<tt&&slope(q[hh],q[hh+1])<=2.0*a(i)) hh++; f[i]=f[q[hh]]+(a(i)-b(q[hh]))*(a(i)-b(q[hh])); while(hh<tt&&slope(q[tt-1],q[tt])>slope(q[tt],i)) tt--; q[++tt]=i; } cout<<f[n]<<endl; }