[HNOI2008]玩具装箱
f[i] =max( f[j]+ (s[i]-s[j] + i-j+1 )^2
设 a[i] =fi + si ,b[i] =s[i]+i+1
f[i] =max( f[j] + (a[i]-b[j])^2
=max{ f[j]+a[j]^2+b[j]^2 -2*a[j]*b[j])
然后斜率优化: 考虑2个点j k, j<k , func(j)<func(k) ,得到斜率的柿子
#include <iostream>
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N =5e4+2;
#define int long long
int f[N];
int n,m, s[N];
int q[N],hh,tt;
int a(int i){
return s[i]+i;
}
int b(int i){
return a(i)+m+1;
}
int Y(int i){
return f[i]+b(i)*b(i);
}
long double slope(int i,int j){
return 1.0*(Y(i)-Y(j))/(b(i)-b(j));
}
signed main(){
cin>>n>>m;
int i;
for(i=1;i<=n;i++) cin>>s[i],s[i]+=s[i-1];
hh=tt=1;
for(i=1;i<=n;++i){
while(hh<tt&&slope(q[hh],q[hh+1])<=2.0*a(i))
hh++;
f[i]=f[q[hh]]+(a(i)-b(q[hh]))*(a(i)-b(q[hh]));
while(hh<tt&&slope(q[tt-1],q[tt])>slope(q[tt],i))
tt--;
q[++tt]=i;
}
cout<<f[n]<<endl;
}
浙公网安备 33010602011771号