light oj 1138 - Trailing Zeroes (III)【规律&&二分】
1138 - Trailing Zeroes (III)
| Time Limit: 2 second(s) | Memory Limit: 32 MB |
You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in decimal notation. As you know N! = 1*2*...*N. For example, 5! = 120, 120 contains one zero on the trail.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case contains an integer Q (1 ≤ Q ≤ 108) in a line.
Output
For each case, print the case number and N. If no solution is found then print 'impossible'.
Sample Input |
Output for Sample Input |
|
3 1 2 5 |
Case 1: 5 Case 2: 10 Case 3: impossible
|
以前在杭电上做过跟这个类似的题,主要考察的知识点一样,只是那个是给出n求0的个数,这个给出0的个数求n
题解:主要还是求数中含有5的个数
#include<stdio.h>
#include<string.h>
#define LL long long
LL fun(LL x)
{
LL ans=0;
while(x)
{
ans+=x/5;
x/=5;
}
return ans;
}
int main()
{
int t,k=1;
LL n;
scanf("%d",&t);
while(t--)
{
scanf("%lld",&n);
LL l=0,r=500000000,mid,ans;
while(r>l)
{
mid=(l+r)/2;
if(fun(mid)>=n)
{
ans=mid;
r=mid;
}
else
l=mid+1;
}
printf("Case %d: ",k++);
if(fun(ans)!=n)
printf("impossible\n");
else
printf("%lld\n",ans);
}
return 0;
}

浙公网安备 33010602011771号