Loading

[2024-04-04]二元系数求解

\[y_i=ax_i^2+bx_i \]

\[y_j=ax_j^2+bx_j \]


\[y_ix_j=ax_i^2x_j+bx_ix_j \]

\[y_jx_i=ax_j^2x_i+bx_ix_j \]


\[y_ix_j-y_jx_i=a(x_i^2x_j-x_j^2x_i) \]


\[a=\frac{y_ix_j-y_jx_i}{x_i^2x_j-x_j^2x_i} \]


\[y_ix_j^2=ax_i^2x_j^2+bx_ix_j^2 \]

\[y_jx_i^2=ax_i^2x_j^2+bx_jx_i^2 \]


\[y_ix_j^2-y_jx_i^2=b(x_ix_j^2-x_i^2x_j) \]


\[b=\frac{y_ix_j^2-y_jx_i^2}{x_ix_j^2-x_i^2x_j} \]


posted @ 2024-09-15 10:24  TommyJin  阅读(13)  评论(0)    收藏  举报