[2024-04-04]二元系数求解
\[y_i=ax_i^2+bx_i
\]
\[y_j=ax_j^2+bx_j
\]
\[y_ix_j=ax_i^2x_j+bx_ix_j
\]
\[y_jx_i=ax_j^2x_i+bx_ix_j
\]
\[y_ix_j-y_jx_i=a(x_i^2x_j-x_j^2x_i)
\]
\[a=\frac{y_ix_j-y_jx_i}{x_i^2x_j-x_j^2x_i}
\]
\[y_ix_j^2=ax_i^2x_j^2+bx_ix_j^2
\]
\[y_jx_i^2=ax_i^2x_j^2+bx_jx_i^2
\]
\[y_ix_j^2-y_jx_i^2=b(x_ix_j^2-x_i^2x_j)
\]
\[b=\frac{y_ix_j^2-y_jx_i^2}{x_ix_j^2-x_i^2x_j}
\]

浙公网安备 33010602011771号