【高等数学笔记-极限(5)】两个重要极限 极限存在准则
第一重要极限
limx→0sinxx=1 \boxed{\lim_{x\to 0}\frac{\sin x}{x}=1} x→0limxsinx=1
易得以下极限
limx→0xsinx=1limx→0tanxx=1 \boxed{\lim_{x\to 0}\frac{x}{\sin x}=1}\quad \boxed{\lim_{x\to 0}\frac{\tan x}{x}=1} x→0limsinxx=1x→0limxtanx=1
例1
limx→0tanxx=limx→0sinxcosx⋅1x=limx→0sinxx⋅1cosx=1×1=1 \begin{align*} &\lim_{x\to 0}\frac{\tan x}{x}\\[15pt] =&\lim_{x\to 0}\frac{\sin x}{\cos x}\cdot\frac{1}{x}\\[15pt] =&\lim_{x\to 0}\frac{\sin x}{x}\cdot\frac{1}{\cos x}\\[15pt] =&1\times1=1 \end{align*} ===x→0limxtanxx→0limcosxsinx⋅x1x→0limxsinx⋅cosx11×1=1
例2
limx→01−cosxx2=limx→0(1−cosx)(1+cosx)x2⋅(1+cosx)=limx→01−cos2xx2⋅(1+cosx)=limx→0sin2xx2⋅limx→011+cosx=12×12=12 \begin{align*} &\lim_{x\to 0}\frac{1-\cos x}{x^2}\\[15pt] =&\lim_{x\to 0}\frac{(1-\cos x)(1+\cos x)}{x^2\cdot (1+\cos x)}\\[15pt] =&\lim_{x\to 0}\frac{1-\cos ^2 x}{x^2\cdot (1+\cos x)}\\[15pt] =&\lim_{x\to 0}\frac{\sin ^2 x}{x^2}\cdot \lim_{x\to 0}\frac{1}{1+\cos x}\\[15pt] =&1^2\times\frac{1}{2}=\frac{1}{2} \end{align*} ====x→0limx21−cosxx→0limx2⋅(1+cosx)(1−cosx)(1+cosx)x→0limx2⋅(1+cosx)1−cos2xx→0limx2sin2x⋅x→0lim1+cosx112×21=21
或者使用二倍角公式
cos2θ=cos2θ−sin2θ=1−2sin2θ \cos2\theta=cos^2\theta-\sin^2\theta=1-2\sin^2\theta cos2θ=cos2θ−sin2θ=1−2sin2θ
limx→01−cosxx2=limx→02sin2x2x2=12⋅limx→0sin2(x2)(x2)2=12⋅limu→0(sinuu)2=12×12=12 \begin{align*} &\lim_{x\to 0}\frac{1-\cos x}{x^2}\\[15pt] =&\lim_{x\to 0}\frac{2\sin^2\frac{x}{2}}{x^2}\\[15pt] =&\frac{1}{2}\cdot\lim_{x\to 0}\frac{\sin^2(\frac{x}{2})}{(\frac{x}{2})^2}\\[15pt] =&\frac{1}{2}\cdot\lim_{u\to 0}\left(\frac{\sin u}{u}\right)^2\\[15pt] =&\frac{1}{2}\times1^2=\frac{1}{2} \end{align*} ====x→0limx21−cosxx→0limx22sin22x21⋅x→0lim(2x)2sin2(2x)21⋅u→0lim(usinu)221×12=21
例3
limx→0sinωxx=ω⋅limx→0sinωxωx=ω⋅limu→0sinuu=ω \begin{align*} &\lim_{x\to 0}\frac{\sin \omega x}{x}= \omega \cdot \lim_{x\to 0}\frac{\sin \omega x}{ \omega x} =\omega \cdot \lim_{u\to 0}\frac{\sin u}{u}=\omega \end{align*} x→0limxsinωx=ω⋅x→0limωxsinωx=ω⋅u→0limusinu=ω
例4
limx→0sin2xsin5x=limx→0sin2xxsin5xx=25 \lim_{x\to 0}\frac{\sin 2x}{\sin 5x}=\lim_{x\to 0}\frac{\frac{\sin 2x}{x}}{\frac{\sin 5x}{x}}=\frac{2}{5} x→0limsin5xsin2x=x→0limxsin5xxsin2x=52
注: x→0 ⟹ x≠0x\to0 \implies x\ne0x→0⟹x=0故可以同除以xxx
例4
limx→0xcotx=limx→0x⋅cosxsinx=limx→0cosx⋅xsinx=1 \lim_{x\to 0}x\cot x=\lim_{x\to 0}x\cdot\frac{\cos x}{\sin x}=\lim_{x\to 0}\cos x\cdot\frac{x}{\sin x}=1 x→0limxcotx=x→0limx⋅sinxcosx=x→0limcosx⋅sinxx=1
例5
limx→01−cos2xxsinx=limx→01−1+2sin2xxsinx=limx→02sinxx=2 \begin{align*} &\lim_{x\to 0}\frac{1-\cos 2x}{x \sin x}\\[20pt] =&\lim_{x\to 0}\frac{1-1+2\sin^2 x}{x \sin x}\\[20pt] =&\lim_{x\to 0}\frac{2\sin x}{x}\\[20pt] =&2 \end{align*} ===x→0limxsinx1−cos2xx→0limxsinx1−1+2sin2xx→0limx2sinx2
例6
limx→02nsinx2n=limx→02n⋅sinx2n⋅2nx⋅x2n=limx→02n⋅x2n⋅sinx2nx2n=limx→0x⋅sinx2nx2n=0×limu→0sinuu=0×1=0 \begin{align*} &\lim_{x\to 0}2^n\sin \frac{x}{2^n}\\[20pt] =&\lim_{x\to 0}2^n\cdot\sin \frac{x}{2^n}\cdot\frac{2^n}{x}\cdot\frac{x}{2^n}\\[20pt] =&\lim_{x\to 0}2^n\cdot\frac{x}{2^n}\cdot \frac{ \sin \frac{x}{2^n}}{\frac{x}{2^n}}\\[20pt] =&\lim_{x\to 0}x\cdot \frac{ \sin \frac{x}{2^n}}{\frac{x}{2^n}}\\[20pt] =&0\times\lim_{u\to 0}\frac{ \sin u}{u}=0\times1=0\\[20pt] \end{align*} ====x→0lim2nsin2nxx→0lim2n⋅sin2nx⋅x2n⋅2nxx→0lim2n⋅2nx⋅2nxsin2nxx→0limx⋅2nxsin2nx0×u→0limusinu=0×1=0
例7
limn→∞2nsinx2n=limn→∞2n⋅sinx2nx2n⋅x2n=limn→∞x⋅sinx2nx2n=x⋅limu→0sinuu=x×limu→0sinuu=x×1=x \begin{align*} &\lim_{n\to \infty}2^n\sin \frac{x}{2^n}\\[20pt] =&\lim_{n\to \infty}2^n\cdot\frac{\sin \frac{x}{2^n}}{ \frac{x}{2^n}}\cdot \frac{x}{2^n}\\[20pt] =&\lim_{n\to \infty}x\cdot \frac{ \sin \frac{x}{2^n}}{\frac{x}{2^n}}\\[20pt] =&x\cdot \lim_{u\to 0}\frac{ \sin u}{u}\\[20pt] =&x\times\lim_{u\to 0}\frac{ \sin u}{u}=x\times1=x\\[20pt] \end{align*} ====n→∞lim2nsin2nxn→∞lim2n⋅2nxsin2nx⋅2nxn→∞limx⋅2nxsin2nxx⋅u→0limusinux×u→0limusinu=x×1=x
第二重要极限
limx→∞(1+1x)x=e \boxed{\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e} x→∞lim(1+x1)x=e
- 易得以下极限:
limx→0(1+x)1x=elimx→∞(1−1x)x=1e \boxed{\lim_{x\to 0}\left(1+x\right)^\frac{1}{x}=e} \quad \boxed{\lim_{x\to\infty}\left(1-\frac{1}{x}\right)^x=\frac{1}{e}} x→0lim(1+x)x1=ex→∞lim(1−x1)x=e1
求limx→∞(1−1x)x,令u=−x,x→∞,u→∞则有:limu→∞(1+1u)−u=[limu→∞(1+1u)u]−1=1e 求\lim_{x\to\infty}\left(1-\frac{1}{x}\right)^x , 令u=-x,x\to \infty,u\to \infty则有:\\[15pt] \lim_{u\to\infty}\left(1+\frac{1}{u}\right)^{-u}=\left[\lim_{u\to\infty}\left(1+\frac{1}{u}\right)^{u}\right]^{-1}=\frac{1}{e}\\[15pt] 求x→∞lim(1−x1)x,令u=−x,x→∞,u→∞则有:u→

浙公网安备 33010602011771号