【高等数学笔记-极限(5)】两个重要极限 极限存在准则

第一重要极限

lim⁡x→0sin⁡xx=1 \boxed{\lim_{x\to 0}\frac{\sin x}{x}=1} x0limxsinx=1

易得以下极限
lim⁡x→0xsin⁡x=1lim⁡x→0tan⁡xx=1 \boxed{\lim_{x\to 0}\frac{x}{\sin x}=1}\quad \boxed{\lim_{x\to 0}\frac{\tan x}{x}=1} x0limsinxx=1x0limxtanx=1
例1
lim⁡x→0tan⁡xx=lim⁡x→0sin⁡xcos⁡x⋅1x=lim⁡x→0sin⁡xx⋅1cos⁡x=1×1=1 \begin{align*} &\lim_{x\to 0}\frac{\tan x}{x}\\[15pt] =&\lim_{x\to 0}\frac{\sin x}{\cos x}\cdot\frac{1}{x}\\[15pt] =&\lim_{x\to 0}\frac{\sin x}{x}\cdot\frac{1}{\cos x}\\[15pt] =&1\times1=1 \end{align*} ===x0limxtanxx0limcosxsinxx1x0limxsinxcosx11×1=1
例2
lim⁡x→01−cos⁡xx2=lim⁡x→0(1−cos⁡x)(1+cos⁡x)x2⋅(1+cos⁡x)=lim⁡x→01−cos⁡2xx2⋅(1+cos⁡x)=lim⁡x→0sin⁡2xx2⋅lim⁡x→011+cos⁡x=12×12=12 \begin{align*} &\lim_{x\to 0}\frac{1-\cos x}{x^2}\\[15pt] =&\lim_{x\to 0}\frac{(1-\cos x)(1+\cos x)}{x^2\cdot (1+\cos x)}\\[15pt] =&\lim_{x\to 0}\frac{1-\cos ^2 x}{x^2\cdot (1+\cos x)}\\[15pt] =&\lim_{x\to 0}\frac{\sin ^2 x}{x^2}\cdot \lim_{x\to 0}\frac{1}{1+\cos x}\\[15pt] =&1^2\times\frac{1}{2}=\frac{1}{2} \end{align*} ====x0limx21cosxx0limx2(1+cosx)(1cosx)(1+cosx)x0limx2(1+cosx)1cos2xx0limx2sin2xx0lim1+cosx112×21=21
或者使用二倍角公式
cos⁡2θ=cos2θ−sin⁡2θ=1−2sin⁡2θ \cos2\theta=cos^2\theta-\sin^2\theta=1-2\sin^2\theta cos2θ=cos2θsin2θ=12sin2θ
lim⁡x→01−cos⁡xx2=lim⁡x→02sin⁡2x2x2=12⋅lim⁡x→0sin⁡2(x2)(x2)2=12⋅lim⁡u→0(sin⁡uu)2=12×12=12 \begin{align*} &\lim_{x\to 0}\frac{1-\cos x}{x^2}\\[15pt] =&\lim_{x\to 0}\frac{2\sin^2\frac{x}{2}}{x^2}\\[15pt] =&\frac{1}{2}\cdot\lim_{x\to 0}\frac{\sin^2(\frac{x}{2})}{(\frac{x}{2})^2}\\[15pt] =&\frac{1}{2}\cdot\lim_{u\to 0}\left(\frac{\sin u}{u}\right)^2\\[15pt] =&\frac{1}{2}\times1^2=\frac{1}{2} \end{align*} ====x0limx21cosxx0limx22sin22x21x0lim(2x)2sin2(2x)21u0lim(usinu)221×12=21
例3
lim⁡x→0sin⁡ωxx=ω⋅lim⁡x→0sin⁡ωxωx=ω⋅lim⁡u→0sin⁡uu=ω \begin{align*} &\lim_{x\to 0}\frac{\sin \omega x}{x}= \omega \cdot \lim_{x\to 0}\frac{\sin \omega x}{ \omega x} =\omega \cdot \lim_{u\to 0}\frac{\sin u}{u}=\omega \end{align*} x0limxsinωx=ωx0limωxsinωx=ωu0limusinu=ω

例4
lim⁡x→0sin⁡2xsin⁡5x=lim⁡x→0sin⁡2xxsin⁡5xx=25 \lim_{x\to 0}\frac{\sin 2x}{\sin 5x}=\lim_{x\to 0}\frac{\frac{\sin 2x}{x}}{\frac{\sin 5x}{x}}=\frac{2}{5} x0limsin5xsin2x=x0limxsin5xxsin2x=52

注: x→0  ⟹  x≠0x\to0 \implies x\ne0x0x=0故可以同除以xxx

例4
lim⁡x→0xcot⁡x=lim⁡x→0x⋅cos⁡xsin⁡x=lim⁡x→0cos⁡x⋅xsin⁡x=1 \lim_{x\to 0}x\cot x=\lim_{x\to 0}x\cdot\frac{\cos x}{\sin x}=\lim_{x\to 0}\cos x\cdot\frac{x}{\sin x}=1 x0limxcotx=x0limxsinxcosx=x0limcosxsinxx=1

例5
lim⁡x→01−cos⁡2xxsin⁡x=lim⁡x→01−1+2sin⁡2xxsin⁡x=lim⁡x→02sin⁡xx=2 \begin{align*} &\lim_{x\to 0}\frac{1-\cos 2x}{x \sin x}\\[20pt] =&\lim_{x\to 0}\frac{1-1+2\sin^2 x}{x \sin x}\\[20pt] =&\lim_{x\to 0}\frac{2\sin x}{x}\\[20pt] =&2 \end{align*} ===x0limxsinx1cos2xx0limxsinx11+2sin2xx0limx2sinx2

例6
lim⁡x→02nsin⁡x2n=lim⁡x→02n⋅sin⁡x2n⋅2nx⋅x2n=lim⁡x→02n⋅x2n⋅sin⁡x2nx2n=lim⁡x→0x⋅sin⁡x2nx2n=0×lim⁡u→0sin⁡uu=0×1=0 \begin{align*} &\lim_{x\to 0}2^n\sin \frac{x}{2^n}\\[20pt] =&\lim_{x\to 0}2^n\cdot\sin \frac{x}{2^n}\cdot\frac{2^n}{x}\cdot\frac{x}{2^n}\\[20pt] =&\lim_{x\to 0}2^n\cdot\frac{x}{2^n}\cdot \frac{ \sin \frac{x}{2^n}}{\frac{x}{2^n}}\\[20pt] =&\lim_{x\to 0}x\cdot \frac{ \sin \frac{x}{2^n}}{\frac{x}{2^n}}\\[20pt] =&0\times\lim_{u\to 0}\frac{ \sin u}{u}=0\times1=0\\[20pt] \end{align*} ====x0lim2nsin2nxx0lim2nsin2nxx2n2nxx0lim2n2nx2nxsin2nxx0limx2nxsin2nx0×u0limusinu=0×1=0

例7
lim⁡n→∞2nsin⁡x2n=lim⁡n→∞2n⋅sin⁡x2nx2n⋅x2n=lim⁡n→∞x⋅sin⁡x2nx2n=x⋅lim⁡u→0sin⁡uu=x×lim⁡u→0sin⁡uu=x×1=x \begin{align*} &\lim_{n\to \infty}2^n\sin \frac{x}{2^n}\\[20pt] =&\lim_{n\to \infty}2^n\cdot\frac{\sin \frac{x}{2^n}}{ \frac{x}{2^n}}\cdot \frac{x}{2^n}\\[20pt] =&\lim_{n\to \infty}x\cdot \frac{ \sin \frac{x}{2^n}}{\frac{x}{2^n}}\\[20pt] =&x\cdot \lim_{u\to 0}\frac{ \sin u}{u}\\[20pt] =&x\times\lim_{u\to 0}\frac{ \sin u}{u}=x\times1=x\\[20pt] \end{align*} ====nlim2nsin2nxnlim2n2nxsin2nx2nxnlimx2nxsin2nxxu0limusinux×u0limusinu=x×1=x

第二重要极限

lim⁡x→∞(1+1x)x=e \boxed{\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e} xlim(1+x1)x=e

  • 易得以下极限:
    lim⁡x→0(1+x)1x=elim⁡x→∞(1−1x)x=1e \boxed{\lim_{x\to 0}\left(1+x\right)^\frac{1}{x}=e} \quad \boxed{\lim_{x\to\infty}\left(1-\frac{1}{x}\right)^x=\frac{1}{e}} x0lim(1+x)x1=exlim(1x1)x=e1

求lim⁡x→∞(1−1x)x,令u=−x,x→∞,u→∞则有:lim⁡u→∞(1+1u)−u=[lim⁡u→∞(1+1u)u]−1=1e 求\lim_{x\to\infty}\left(1-\frac{1}{x}\right)^x , 令u=-x,x\to \infty,u\to \infty则有:\\[15pt] \lim_{u\to\infty}\left(1+\frac{1}{u}\right)^{-u}=\left[\lim_{u\to\infty}\left(1+\frac{1}{u}\right)^{u}\right]^{-1}=\frac{1}{e}\\[15pt] xlim(1x1)x,u=x,x,u则有:u

posted @ 2025-08-22 13:20  tomcat4014  阅读(0)  评论(0)    收藏  举报  来源