【高等数学笔记-极限(4)】极限的运算法则

运算法则

有关无穷小量的:

  • 两个无穷小量之和为无穷小量
  • 两个无穷小量之积为无穷小量
  • 有限个无穷小量之和为无穷小量
  • 有限个无穷小量之积为无穷小量
  • 常数乘以无穷小量为无穷小量
  • 有界函数与无穷小量之积为无穷小量

不可使用的:

  • 两个无穷小量之商:不定式

注意必须2个极限都存在时才可以使用,否则不可以使用!!并且这里的极限代表不同极限情况(趋于某点或者趋于无穷)

lim⁡f(x)=A,lim⁡g(x)=B\lim f(x)=A,\lim g(x)=Blimf(x)=A,limg(x)=B,那么有:

  • lim⁡[f(x)+g(x)]=lim⁡f(x)+lim⁡g(x)\lim [f(x)+g(x)]=\lim f(x)+\lim g(x)lim[f(x)+g(x)]=limf(x)+limg(x)
  • lim⁡[f(x)−g(x)]=lim⁡f(x)−lim⁡g(x)\lim [f(x)-g(x)]=\lim f(x)-\lim g(x)lim[f(x)g(x)]=limf(x)limg(x)
  • lim⁡[f(x)⋅g(x)]=lim⁡f(x)⋅lim⁡g(x)\lim [f(x)\cdot g(x)]=\lim f(x)\cdot \lim g(x)lim[f(x)g(x)]=limf(x)limg(x)
  • lim⁡f(x)g(x)=lim⁡f(x)lim⁡g(x),g(x)≠0\lim \frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)} ,\quad g(x)\ne 0limg(x)f(x)=limg(x)limf(x),g(x)=0

这个四则运算同样适用于数列的极限运算

即同一极限过程中,函数之和(差,积,商)的极限,等于函数的极限之和(差,积,商);
证明:
即证明当lim⁡f(x)=A,lim⁡g(x)=B\lim f(x)=A,\lim g(x)=Blimf(x)=A,limg(x)=B时,
lim⁡[f(x)+g(x)]=lim⁡f(x)+lim⁡g(x)=A+B\lim [f(x)+g(x)]=\lim f(x)+\lim g(x)=A+Blim[f(x)+g(x)]=limf(x)+limg(x)=A+B
即证明f(x)+g(x)f(x)+g(x)f(x)+g(x)的极限是A+BA+BA+B
∀ε>0,∃δ>0;当0<∣x−x0∣<δ时,有∣f(x)+g(x)−(A+B)∣<ε\forall \varepsilon>0,\exists \delta>0;当0<|x-x_0|<\delta时,有|f(x)+g(x)-(A+B)|<\varepsilonε>0,δ>0;0<xx0<δ,f(x)+g(x)(A+B)<ε

A=lim⁡f(x)=f(x)+α;B=lim⁡f(x)=f(x)+β A=\lim f(x)=f(x)+\alpha;B=\lim f(x)=f(x)+\beta A=limf(x)=f(x)+α;B=limf(x)=f(x)+β
∣f(x)+g(x)−(A+B)∣=∣A−α+B−β−(A+B)∣  ⟹  ∣α+β∣<ε |f(x)+g(x)-(A+B)|=|A-\alpha+B-\beta - (A+B)| \implies |\alpha+\beta |<\varepsilon f(x)+g(x)(A+B)=Aα+Bβ(A+B)α+β<ε
得证

  • lim⁡[c⋅f(x)]=c⋅lim⁡f(x)\lim [c\cdot f(x)]=c\cdot \lim f(x)lim[cf(x)]=climf(x)

注意求极限的变量对象是谁,非自变量都视为常数ccc
例如
lim⁡x→2x2n+1=1(n+1)⋅lim⁡x→2x2=4(n+1)\lim_{x\to 2} \frac{x^2}{n+1}=\frac{1}{(n+1)}\cdot \lim_{x\to 2} {x^2}=\frac{4}{(n+1)}x2limn+1x2=(n+1)1x2limx2=(n+1)4
lim⁡n→2x2n+1=x2⋅lim⁡n→21(n+1)=x23\lim_{n\to 2} \frac{x^2}{n+1}=x^2\cdot \lim_{n\to 2} {\frac{1}{(n+1)}}=\frac{x^2}{3}n2limn+1x2=x2n2lim(n+1)1=3x2

  • lim⁡[f(x)]n=[lim⁡f(x)]n,n∈N+\lim [f(x)]^n=[\lim f(x)]^n,n \in \mathbb{N^+}lim[f(x)]n=[limf(x)]n,nN+

  • φ(x)≥ψ(x)  ⟹  lim⁡φ(x)≥ψ(x)\varphi(x)\ge\psi(x)\implies \lim{\varphi(x)}\ge{\psi(x)}φ(x)ψ(x)limφ(x)ψ(x)

  • 多项式的分数形式的商(有理函数),x→∞x\to\inftyx时极限,最高次数的系数之比就是极限;如果分母最高次次数比分子高,则极限无穷大;分母的最高次次数大于分子,则极限无穷小;

  • 复合函数的极限法则,即先求内层的极限,再求外层极限;举例:

lim⁡x→0esin⁡x  ⟹  lim⁡x→0sin⁡x⏟u=0  ⟹  lim⁡u→0eu=1 \lim_{x \to 0}e^{\sin x} \implies \lim_{x \to 0}{\underbrace{\sin x}_{u}}=\boxed{0}\implies \lim_{u \to \boxed{0}}{e^u}=1 x0limesinxx0limu sinx=0u0limeu=1
以某点的极限为例:
计算:lim⁡x→x0f(g(x))令u=g(x),lim⁡x→x0g(x)=u0则lim⁡x→x0f(g(x))=lim⁡u→u0f(u) 计算:\lim_{x\to x_0} f(g(x))\\[20pt] 令u=g(x),\lim_{x\to x_0} g(x)=u_0\\[20pt] 则\lim_{x\to x_0} f(g(x))=\lim_{u\to u_0} f(u) 计算:xx0limf(g(x))u=g(x),xx0limg(x)=u0

posted @ 2025-08-22 13:19  tomcat4014  阅读(0)  评论(0)    收藏  举报  来源