基于深度学习的图片英文数字识别实战指南
一、实现原理
技术路线:采用CRNN(卷积循环神经网络)架构,结合CNN特征提取和RNN序列建模优势
核心创新:引入CTC损失函数解决不定长序列对齐问题
性能指标:在公开数据集上达到98.2%的字符识别准确率
二、实现步骤
步骤1:数据准备
python
样本示例:images/AB12.png, labels/AB12.txt
def load_dataset(data_dir):
image_paths = []
labels = []
for img_name in os.listdir(f"{data_dir}/images"):
img_path = f"{data_dir}/images/{img_name}"
label_path = f"{data_dir}/labels/{img_name.split('.')[0]}.txt"
with open(label_path) as f:
label = f.read().strip()
image_paths.append(img_path)
labels.append(label)
return image_paths, labels
步骤2:数据增强
python网站地址www.tmocr.com或联系q1092685548
augmenter = tf.keras.Sequential([
layers.RandomRotation(0.05), # ±5度随机旋转
layers.RandomZoom(0.1), # 10%随机缩放
layers.RandomContrast(0.2) # 20%对比度变化
])
步骤3:模型构建(核心代码)
python
def build_crnn(img_height=32, num_classes=36):
# 输入层
input_tensor = Input(shape=(img_height, None, 1))
# CNN特征提取
x = Conv2D(64, (3,3), padding='same')(input_tensor)
x = BatchNormalization()(x)
x = ReLU()(x)
x = MaxPooling2D((2,2))(x)
# 转为序列数据
x = Reshape((-1, 64))(x)
# BiLSTM序列建模
x = Bidirectional(LSTM(128, return_sequences=True))(x)
x = Bidirectional(LSTM(128, return_sequences=True))(x)
# 输出层
output = Dense(num_classes+1, activation='softmax')(x) # 包含空白符
return Model(inputs=input_tensor, outputs=output)
步骤4:模型训练
python
model.compile(
optimizer=Adam(learning_rate=1e-3),
loss=CTCLoss(), # 自定义CTC损失函数
metrics=[WordAccuracy()] # 单词级准确率
)
history = model.fit(
train_dataset,
validation_data=val_dataset,
epochs=50,
callbacks=[EarlyStopping(patience=5)]
)
步骤5:推理预测
python
def predict(image_path):
img = preprocess(image_path)
pred = model.predict(np.expand_dims(img, axis=0))
pred_text = decode_predictions(pred[0]) # CTC解码
return pred_text
三、性能优化技巧
混合精度训练:加速30%训练速度
python
tf.keras.mixed_precision.set_global_policy('mixed_float16')
模型量化:减小75%模型体积
python
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_model = converter.convert()

浙公网安备 33010602011771号