代码改变世界

【数据分析】基于大数据的BOSS直聘就业岗位数据可视化分析系统 | 毕业设计实战任务 选题推荐 可视化大屏 Hadoop SPark java Python

2025-10-11 19:37  tlnshuju  阅读(24)  评论(0)    收藏  举报

作者:计算机毕业设计江挽
个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,研发项目包括大材料、深度学习、网站、小软件、安卓、算法。平常会做一些计划定制化制作、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的挑战的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
想说的话:感谢大家的关注与支持!

网站实战项目
安卓/小工具实战工程
大数据实战方案
深度学习实战项目

基于大数据的BOSS直聘就业岗位资料可视化分析系统介绍

基于大数据的BOSS直聘就业岗位素材可视化分析系统是一个综合运用Hadoop分布式存储和Spark大数据处理技巧的数据分析平台,专门针对BOSS直聘平台的岗位信息进行深度挖掘和可视化展示。系统采用Python作为关键开发语言,结合Django框架构建稳定的后端服务架构,前端使用Vue+ElementUI+Echarts技术栈实现用户友好的交互界面和丰富的图表展示效果。系统通过Hadoop HDFS存储海量岗位资料,利用Spark SQL进行高效的素材查询和分析处理,结合Pandas和NumPy进行数据清洗和统计计算。核心功能模块包括薪酬水平分析、市场需求分析、技能福利分析和多维交叉分析,能够从不同维度对岗位数据进行深入剖析,为用户提供直观的材料可视化结果。系统还配备了大屏可视化模块,承受实时数据展示和动态图表更新,同时具备完善的用户管理效果,包括个人信息维护和密码管理等基础服务,整体架构设计合理,技术选型恰当,能够高效处理大规模岗位内容的存储、分析和展示需求。

基于大数据的BOSS直聘就业岗位数据可视化分析系统演示视频

【数据分析】基于大数据的BOSS直聘就业岗位数据可视化分析系统 | 毕业设计实战工程 选题推荐 可视化大屏 Hadoop SPark java Python

基于大数据的BOSS直聘就业岗位材料可视化分析系统演示图片

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于大内容的BOSS直聘就业岗位数据可视化分析系统代码展示

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, avg, count, desc, asc, sum as spark_sum, max as spark_max, min as spark_min
import pandas as pd
import numpy as np
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
import json
from datetime import datetime
spark = SparkSession.builder.appName("BOSSDataAnalysis").config("spark.sql.adaptive.enabled", "true").getOrCreate()
def salary_analysis(request):
try:
df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/boss_data").option("dbtable", "job_positions").option("user", "root").option("password", "password").load()
df.createOrReplaceTempView("positions")
salary_stats = spark.sql("SELECT industry, city, AVG(salary_min) as avg_min_salary, AVG(salary_max) as avg_max_salary, COUNT(*) as position_count FROM positions WHERE salary_min > 0 AND salary_max > 0 GROUP BY industry, city ORDER BY avg_max_salary DESC")
salary_range_analysis = spark.sql("SELECT CASE WHEN salary_max <= 8000 THEN '0-8K' WHEN salary_max <= 15000 THEN '8-15K' WHEN salary_max <= 25000 THEN '15-25K' WHEN salary_max <= 40000 THEN '25-40K' ELSE '40K+' END as salary_range, COUNT(*) as count, ROUND(COUNT(*) * 100.0 / (SELECT COUNT(*) FROM positions WHERE salary_max > 0), 2) as percentage FROM positions WHERE salary_max > 0 GROUP BY salary_range ORDER BY salary_max")
  experience_salary = spark.sql("SELECT experience_required, AVG(salary_max) as avg_salary, COUNT(*) as job_count FROM positions WHERE salary_max > 0 AND experience_required IS NOT NULL GROUP BY experience_required ORDER BY avg_salary DESC")
  education_salary = spark.sql("SELECT education_required, AVG(salary_min) as min_avg, AVG(salary_max) as max_avg, COUNT(*) as count FROM positions WHERE salary_max > 0 AND education_required IS NOT NULL GROUP BY education_required ORDER BY max_avg DESC")
  monthly_trend = spark.sql("SELECT DATE_FORMAT(publish_time, 'yyyy-MM') as month, AVG(salary_max) as avg_salary, COUNT(*) as job_count FROM positions WHERE salary_max > 0 AND publish_time >= date_sub(current_date(), 365) GROUP BY month ORDER BY month")
  company_size_salary = spark.sql("SELECT company_size, AVG(salary_min) as avg_min, AVG(salary_max) as avg_max, COUNT(*) as position_count FROM positions WHERE salary_max > 0 AND company_size IS NOT NULL GROUP BY company_size ORDER BY avg_max DESC")
  result_data = {
  'salary_stats': [row.asDict() for row in salary_stats.collect()],
  'salary_distribution': [row.asDict() for row in salary_range_analysis.collect()],
  'experience_analysis': [row.asDict() for row in experience_salary.collect()],
  'education_analysis': [row.asDict() for row in education_salary.collect()],
  'trend_analysis': [row.asDict() for row in monthly_trend.collect()],
  'company_analysis': [row.asDict() for row in company_size_salary.collect()]
  }
  return JsonResponse({'status': 'success', 'data': result_data})
  except Exception as e:
  return JsonResponse({'status': 'error', 'message': str(e)})
  def market_demand_analysis(request):
  try:
  df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/boss_data").option("dbtable", "job_positions").option("user", "root").option("password", "password").load()
  df.createOrReplaceTempView("positions")
  industry_demand = spark.sql("SELECT industry, COUNT(*) as job_count, COUNT(DISTINCT company_name) as company_count, AVG(salary_max) as avg_salary FROM positions WHERE publish_time >= date_sub(current_date(), 30) GROUP BY industry ORDER BY job_count DESC LIMIT 20")
  city_demand = spark.sql("SELECT city, COUNT(*) as position_count, COUNT(DISTINCT industry) as industry_diversity, AVG(salary_max) as avg_salary FROM positions WHERE publish_time >= date_sub(current_date(), 30) GROUP BY city ORDER BY position_count DESC LIMIT 15")
  skill_demand = spark.sql("SELECT skill_tags, COUNT(*) as demand_count, AVG(salary_max) as avg_salary FROM positions WHERE skill_tags IS NOT NULL AND skill_tags != '' AND publish_time >= date_sub(current_date(), 30) GROUP BY skill_tags ORDER BY demand_count DESC LIMIT 30")
  position_demand = spark.sql("SELECT position_name, COUNT(*) as job_count, AVG(salary_min) as avg_min_salary, AVG(salary_max) as avg_max_salary, COUNT(DISTINCT city) as city_spread FROM positions WHERE publish_time >= date_sub(current_date(), 30) GROUP BY position_name ORDER BY job_count DESC LIMIT 25")
  growth_trend = spark.sql("SELECT DATE_FORMAT(publish_time, 'yyyy-MM-dd') as date, COUNT(*) as daily_jobs, COUNT(DISTINCT company_name) as active_companies FROM positions WHERE publish_time >= date_sub(current_date(), 90) GROUP BY date ORDER BY date")
  urgent_positions = spark.sql("SELECT industry, position_name, city, COUNT(*) as urgent_count, AVG(salary_max) as salary FROM positions WHERE urgent_flag = 1 AND publish_time >= date_sub(current_date(), 7) GROUP BY industry, position_name, city ORDER BY urgent_count DESC LIMIT 20")
  company_activity = spark.sql("SELECT company_name, company_size, COUNT(*) as job_posted, COUNT(DISTINCT position_name) as position_variety, AVG(salary_max) as avg_offer FROM positions WHERE publish_time >= date_sub(current_date(), 30) GROUP BY company_name, company_size ORDER BY job_posted DESC LIMIT 30")
  demand_data = {
  'industry_ranking': [row.asDict() for row in industry_demand.collect()],
  'city_ranking': [row.asDict() for row in city_demand.collect()],
  'skill_ranking': [row.asDict() for row in skill_demand.collect()],
  'position_ranking': [row.asDict() for row in position_demand.collect()],
  'growth_trend': [row.asDict() for row in growth_trend.collect()],
  'urgent_analysis': [row.asDict() for row in urgent_positions.collect()],
  'company_activity': [row.asDict() for row in company_activity.collect()]
  }
  return JsonResponse({'status': 'success', 'data': demand_data})
  except Exception as e:
  return JsonResponse({'status': 'error', 'message': str(e)})
  def multi_dimensional_analysis(request):
  try:
  df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/boss_data").option("dbtable", "job_positions").option("user", "root").option("password", "password").load()
  df.createOrReplaceTempView("positions")
  request_data = json.loads(request.body) if request.method == 'POST' else {}
  selected_city = request_data.get('city', None)
  selected_industry = request_data.get('industry', None)
  selected_experience = request_data.get('experience', None)
  base_query = "SELECT * FROM positions WHERE salary_max > 0"
  if selected_city:
  base_query += f" AND city = '{selected_city}'"
  if selected_industry:
  base_query += f" AND industry = '{selected_industry}'"
  if selected_experience:
  base_query += f" AND experience_required = '{selected_experience}'"
  spark.sql(f"CREATE OR REPLACE TEMPORARY VIEW filtered_positions AS {base_query}")
  cross_analysis = spark.sql("SELECT industry, city, experience_required, education_required, AVG(salary_min) as avg_min, AVG(salary_max) as avg_max, COUNT(*) as job_count, COUNT(DISTINCT company_name) as company_count FROM filtered_positions GROUP BY industry, city, experience_required, education_required ORDER BY job_count DESC")
  correlation_analysis = spark.sql("SELECT company_size, industry, AVG(salary_max) as avg_salary, COUNT(*) as position_count, ROUND(AVG(salary_max) / (SELECT AVG(salary_max) FROM filtered_positions) * 100, 2) as salary_index FROM filtered_positions WHERE company_size IS NOT NULL GROUP BY company_size, industry ORDER BY avg_salary DESC")
  skill_salary_matrix = spark.sql("SELECT skill_tags, experience_required, COUNT(*) as job_count, AVG(salary_max) as avg_salary, MIN(salary_max) as min_salary, MAX(salary_max) as max_salary FROM filtered_positions WHERE skill_tags IS NOT NULL AND experience_required IS NOT NULL GROUP BY skill_tags, experience_required ORDER BY avg_salary DESC")
  geographic_distribution = spark.sql("SELECT city, industry, COUNT(*) as job_density, AVG(salary_max) as avg_salary, ROUND(COUNT(*) * 100.0 / (SELECT COUNT(*) FROM filtered_positions), 2) as market_share FROM filtered_positions GROUP BY city, industry ORDER BY job_density DESC")
  time_dimension = spark.sql("SELECT DATE_FORMAT(publish_time, 'yyyy-MM') as month, industry, city, COUNT(*) as monthly_jobs, AVG(salary_max) as monthly_avg_salary FROM filtered_positions WHERE publish_time >= date_sub(current_date(), 180) GROUP BY month, industry, city ORDER BY month, monthly_jobs DESC")
  competitive_analysis = spark.sql("SELECT position_name, city, COUNT(*) as competition_level, AVG(salary_max) as market_price, STDDEV(salary_max) as salary_variance FROM filtered_positions GROUP BY position_name, city HAVING COUNT(*) >= 5 ORDER BY competition_level DESC")
  comprehensive_ranking = spark.sql("SELECT industry, city, COUNT(*) as total_jobs, AVG(salary_max) as avg_salary, COUNT(DISTINCT company_name) as company_diversity, COUNT(DISTINCT position_name) as position_variety, (COUNT(*) * 0.4 + AVG(salary_max)/1000 * 0.3 + COUNT(DISTINCT company_name) * 0.3) as comprehensive_score FROM filtered_positions GROUP BY industry, city ORDER BY comprehensive_score DESC LIMIT 20")
  analysis_result = {
  'cross_analysis': [row.asDict() for row in cross_analysis.collect()],
  'correlation_data': [row.asDict() for row in correlation_analysis.collect()],
  'skill_matrix': [row.asDict() for row in skill_salary_matrix.collect()],
  'geographic_data': [row.asDict() for row in geographic_distribution.collect()],
  'time_series': [row.asDict() for row in time_dimension.collect()],
  'competition_analysis': [row.asDict() for row in competitive_analysis.collect()],
  'ranking_data': [row.asDict() for row in comprehensive_ranking.collect()]
  }
  return JsonResponse({'status': 'success', 'data': analysis_result, 'filters': request_data})
  except Exception as e:
  return JsonResponse({'status': 'error', 'message': str(e)})

基于大内容的BOSS直聘就业岗位内容可视化分析系统文档展示

在这里插入图片描述

作者:计算机毕业设计江挽
个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小应用、Python、Golang、安卓Android等,开发项目包括大素材、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己研发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的难题允许问我!
想说的话:感谢大家的关注与支持!

网站实战项目
安卓/小脚本实战项目
大数据实战项目
深度学习实战工程