Legendre公式和Kummer定理

Legendre公式

对于质数\(p\),函数\(v_p(n)\)\(n\)标准分解后\(p\)的次数

显然有

\[v_p(n!) = \sum\limits_{i = 1}^{\infty} \lfloor \frac{n}{p^i} \rfloor \]

令函数\(s_p(n)\)\(n\)\(p\)进制下的数位和

有:

\[v_p(n!) = \frac{n - s_p(n)}{p - 1} \]

证明:

\(n = \sum\limits_{i = 0}^{\infty} c_i p^i\)

\(v_p(n!) = \sum\limits_{i = 1}^{\infty} \lfloor \frac{n}{p^i} \rfloor\)

\(= \sum\limits_{i = 1}^{\infty} \sum\limits_{j = i}^{\infty} c_j p^{j - i}\)

\(= \sum\limits_{j = 1}^{\infty} c_j \sum\limits_{i = 0}^{j - 1} p^i\)

\(= \sum\limits_{j = 1}^{\infty} \frac{c_j(p^j - 1)}{p - 1}\)

\(= \frac{1}{p - 1} (\sum\limits_{i = 0}^{\infty} c_i p^i - \sum\limits_{i = 0}^{\infty} c_i)\)

$= \frac{n - s_p(n)}{p - 1} $

Kummer定理

二项式系数

\[v_p(\binom{n}{m}) = \frac{s_p(m) + s_p(n - m) - s_p(n)}{p - 1} \]

同时也等于在\(p\)进制下运算\(n - m\)时退位的次数

多项式系数

\(\binom{n}{m_1, \cdots, m_k} = \frac{n!}{m_1! \cdots m_k!}\)

\[v_p(\binom{n}{m_1, \cdots, m_k}) = \frac{\sum\limits_{i = 1}^k s_p(m_i) - s_p(n)}{p - 1} \]

posted @ 2019-02-22 12:15  tkandi  阅读(1570)  评论(0编辑  收藏