input_list = sorted([os.path.join("/root/userfolder/cl/TTSR/dataset/CUFED/train/input/input", name) for name in
os.listdir("/root/userfolder/cl/TTSR/dataset/CUFED/train/input/input")])
x_ = sorted(os.listdir("/root/userfolder/cl/TTSR/dataset/CUFED/train/input/input"))# os.listdir 只能一个变量
# print(len(x_))
# for i in range(len(x_)):
# print(x_[i].split('.')[-2])
for idx in range(len(input_list)):
HR = imread(input_list[idx])
name = x_[idx].split('.')[-2]
h, w = HR.shape[:2]
### LR and LR_sr
LR_4 = np.array(Image.fromarray(HR).resize((w // 4, h // 4), Image.BICUBIC))
im_4 = Image.fromarray(LR_4)
im_4.save(name + 'x4.png')
input_list = sorted(glob.glob(os.path.join('/home/cl/ttsr/dataset/CUFED/test/CUFED5/'+'*_0.png'))) #glob必须具体到某个文件类型,不能是文件夹
cnt = 0
# print(len(x_))
# for i in range(len(x_)):
# print(x_[i].split('.')[-2])
for idx in range(len(input_list)):
HR = imread(input_list[idx])
import torch
from PIL import Image
from imageio import imread
import numpy as np
import glob
import os
import random
from torchvision import models
from imageio import imread
input_list = sorted(glob.glob('/home/cl/DRN/HR/'+'*.png'))#一定要精确到文件
x_ = sorted(os.listdir("/home/cl/DRN/HR"))
for idx in range(len(input_list)):
HR = imread(input_list[idx])
name = x_[idx].split('.')[-2]
h, w = HR.shape[:2]
### LR and LR_sr
LR_4 = np.array(Image.fromarray(HR).resize((w // 4, h // 4), Image.BICUBIC))
im_4 = Image.fromarray(LR_4)
im_4.save(name + 'x4.png')
im_HR = Image.fromarray(HR)
im_HR.save(str(cnt)+ '.png')
cnt= cnt+1
input_list = sorted(glob.glob(os.path.join('/home/cl/ttsr/dataset/CUFED/test/CUFED5/'+'*_0.png')))
cnt = 0
# print(len(x_))
# for i in range(len(x_)):
# print(x_[i].split('.')[-2])
for idx in range(len(input_list)):
HR = imread(input_list[idx])
h, w = HR.shape[:2]
h, w = h // 4 * 4, w // 4 * 4
HR = HR[:h, :w, :]
im_HR = Image.fromarray(HR)
im_HR.save(str(cnt)+ '.png')
cnt= cnt+1
class TestSet(Dataset):
def __init__(self, args, ref_level='1', transform=transforms.Compose([ToTensor()])):
self.input_list = sorted(glob.glob(os.path.join(args.dataset_dir, 'test/CUFED5', '*_0.png')))
self.ref_list = sorted(glob.glob(os.path.join(args.dataset_dir, 'test/CUFED5',
'*_' + ref_level + '.png')))
# self.lr_sr_list = sorted(glob.glob(os.path.join(args.dataset_dir, 'test/lr_sr', '*.png')))
self.lr_sr_list = sorted(os.listdir('./dataset/CUFED/test/lr_sr'))
self.lr_sr_list.sort(key=lambda x: int(x[:-4]))
self.transform = transform
def __len__(self):
return len(self.input_list)
def __getitem__(self, idx):
### HR
#print('idx',idx)
HR = imread(self.input_list[idx])
#print(self.input_list[idx])
h, w = HR.shape[:2]
h, w = h//4*4, w//4*4
HR = HR[:h, :w, :] ### crop to the multiple of 4
# print('w h',w,h)
# ### LR and LR_sr
LR = np.array(Image.fromarray(HR).resize((w//4, h//4), Image.BICUBIC))
#LR_sr = np.array(Image.fromarray(LR).resize((w, h), Image.BICUBIC))
# print('LR_sr_shanfgxia sep',LR_sr.shape)
LR_sr = imread('./dataset/CUFED/test/lr_sr/'+self.lr_sr_list[idx])
# print('LR_sr_duqu ', LR_sr.shape)
### Ref and Ref_sr
Ref = imread(self.ref_list[idx])
h2, w2 = Ref.shape[:2]
h2, w2 = h2//4*4, w2//4*4
Ref = Ref[:h2, :w2, :]
Ref_sr = np.array(Image.fromarray(Ref).resize((w2//4, h2//4), Image.BICUBIC))
Ref_sr = np.array(Image.fromarray(Ref_sr).resize((w2, h2), Image.BICUBIC))
### change type
LR = LR.astype(np.float32)
LR_sr = LR_sr.astype(np.float32)
HR = HR.astype(np.float32)
Ref = Ref.astype(np.float32)
Ref_sr = Ref_sr.astype(np.float32)
### rgb range to [-1, 1]
LR = LR / 127.5 - 1.
LR_sr = LR_sr / 127.5 - 1.
HR = HR / 127.5 - 1.
Ref = Ref / 127.5 - 1.
Ref_sr = Ref_sr / 127.5 - 1.
sample = {'LR': LR,
'LR_sr': LR_sr,
'HR': HR,
'Ref': Ref,
'Ref_sr': Ref_sr}
if self.transform:
sample = self.transform(sample)
return sample