1 function idx = findClosestCentroids(X, centroids)
2 %FINDCLOSESTCENTROIDS computes the centroid memberships for every example
3 % idx = FINDCLOSESTCENTROIDS (X, centroids) returns the closest centroids
4 % in idx for a dataset X where each row is a single example. idx = m x 1
5 % vector of centroid assignments (i.e. each entry in range [1..K])
6 %
7
8 % Set K
9 K = size(centroids, 1);
10
11 % You need to return the following variables correctly.
12 idx = zeros(size(X,1), 1);
13
14 % ====================== YOUR CODE HERE ======================
15 % Instructions: Go over every example, find its closest centroid, and store
16 % the index inside idx at the appropriate location.
17 % Concretely, idx(i) should contain the index of the centroid
18 % closest to example i. Hence, it should be a value in the
19 % range 1..K
20 %
21 % Note: You can use a for-loop over the examples to compute this.
22 %
23
24
25 for i=1:size(X,1)
26 for j =1:K
27 dis(j)=sum((centroids(j,:)-X(i,:)).^2,2);%sum 每行
28 end
29 [t,idx(i)]=min(dis);%t:最小值 idx :最小值的索引
30 end
31
32
33
34
35 % =============================================================
36
37 end
function centroids = computeCentroids(X, idx, K)
%COMPUTECENTROIDS returns the new centroids by computing the means of the
%data points assigned to each centroid.
% centroids = COMPUTECENTROIDS(X, idx, K) returns the new centroids by
% computing the means of the data points assigned to each centroid. It is
% given a dataset X where each row is a single data point, a vector
% idx of centroid assignments (i.e. each entry in range [1..K]) for each
% example, and K, the number of centroids. You should return a matrix
% centroids, where each row of centroids is the mean of the data points
% assigned to it.
%
% Useful variables
[m n] = size(X);
% You need to return the following variables correctly.
centroids = zeros(K, n);
% ====================== YOUR CODE HERE ======================
% Instructions: Go over every centroid and compute mean of all points that
% belong to it. Concretely, the row vector centroids(i, :)
% should contain the mean of the data points assigned to
% centroid i.
%
% Note: You can use a for-loop over the centroids to compute this.
%
for i=1:K
s=sum(idx==i);%第I个中心所包含的点的个数
if(s~=0)%不为0
centroids(i,:)=mean( X(find(idx==i),:));
else
centroids(i,:)=zeros(1,n);
end
% =============================================================
end
function centroids = kMeansInitCentroids(X, K)
%KMEANSINITCENTROIDS This function initializes K centroids that are to be
%used in K-Means on the dataset X
% centroids = KMEANSINITCENTROIDS(X, K) returns K initial centroids to be
% used with the K-Means on the dataset X
%
% You should return this values correctly
centroids = zeros(K, size(X, 2));
% ====================== YOUR CODE HERE ======================
% Instructions: You should set centroids to randomly chosen examples from
% the dataset X
%
randidx = randperm(size(X,1));
centroids = X(randidx(1:K),:);
% =============================================================
end
function [U, S] = pca(X)
%PCA Run principal component analysis on the dataset X
% [U, S, X] = pca(X) computes eigenvectors of the covariance matrix of X
% Returns the eigenvectors U, the eigenvalues (on diagonal) in S
%
% Useful values
[m, n] = size(X);
% You need to return the following variables correctly.
U = zeros(n);
S = zeros(n);
% ====================== YOUR CODE HERE ======================
% Instructions: You should first compute the covariance matrix. Then, you
% should use the "svd" function to compute the eigenvectors
% and eigenvalues of the covariance matrix.
%
% Note: When computing the covariance matrix, remember to divide by m (the
% number of examples).
%
sigma =1/m*X'*X;
[U,S,V]=svd(sigma);
% =========================================================================
end
function Z = projectData(X, U, K)
%PROJECTDATA Computes the reduced data representation when projecting only
%on to the top k eigenvectors
% Z = projectData(X, U, K) computes the projection of
% the normalized inputs X into the reduced dimensional space spanned by
% the first K columns of U. It returns the projected examples in Z.
%
% You need to return the following variables correctly.
Z = zeros(size(X, 1), K);
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the projection of the data using only the top K
% eigenvectors in U (first K columns).
% For the i-th example X(i,:), the projection on to the k-th
% eigenvector is given as follows:
% x = X(i, :)';
% projection_k = x' * U(:, k);
%
U_reduce = U(:,1:K);
Z= X*U_reduce;
% =============================================================
end
function X_rec = recoverData(Z, U, K)
%RECOVERDATA Recovers an approximation of the original data when using the
%projected data
% X_rec = RECOVERDATA(Z, U, K) recovers an approximation the
% original data that has been reduced to K dimensions. It returns the
% approximate reconstruction in X_rec.
%
% You need to return the following variables correctly.
X_rec = zeros(size(Z, 1), size(U, 1));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the approximation of the data by projecting back
% onto the original space using the top K eigenvectors in U.
%
% For the i-th example Z(i,:), the (approximate)
% recovered data for dimension j is given as follows:
% v = Z(i, :)';
% recovered_j = v' * U(j, 1:K)';
%
% Notice that U(j, 1:K) is a row vector.
%
U_reduce = U(:,1:K);
X_rec = Z*U_reduce';
% =============================================================
end