POJ1284 Primitive Roots【原根】
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 4361 | Accepted: 2568 | 
Description
We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of
 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7. 
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.
Output
For each p, print a single number that gives the number of primitive roots in a single line.
Sample Input
23 31 79
Sample Output
10 8 24
Source
问题简述:参见上文。
问题分析:这个问题的题目是原根,是求奇素数的原根的个数,筛选打表实现。
程序说明:(略)
题记:(略)
参考链接:(略)
AC的C++语言程序如下:
/* POJ1284 Primitive Roots */
#include <iostream>
#include <stdio.h>
using namespace std;
const int N = 65536;
int euler[N+1];
void phi()
{
    for(int i=1; i<=N; i++)
        euler[i] = i;
    for(int i=2; i<=N; i+=2)
        euler[i] /= 2;
    for(int i=3; i<=N; i++) {
        if(euler[i] == i) { // 素数,用该素数筛
            for(int j=i; j<=N; j+=i)
                euler[j] = euler[j] / i * (i - 1);
        }
    }
}
int main()
{
    // 欧拉函数打表
    phi();
    int p;
    while(scanf("%d", &p) != EOF)
        printf("%d\n", euler[p - 1]);
    return 0;
}
 
                    
                     
                    
                 
                    
                 
                
            
         
 
         浙公网安备 33010602011771号
浙公网安备 33010602011771号