latex数学公式

latex tutorial

z = \frac{x}{y}

\[z = \frac{x}{y} \]

C_1 \quad= \quad c_2 + c_4^3

\[C_1 \quad= \quad c_2 + c_4^3 \]

$$
y = \sqrt {x_1^2 + x_2^2 + x_3^2 + x_4^2}
$$

$$
y = \sqrt [3]{x_1^2 + x_2^2 + x_3^2 + x_4^2}
$$

\[y = \sqrt {x_1^2 + x_2^2 + x_3^2 + x_4^2} \]

\[y = \sqrt [3]{x_1^2 + x_2^2 + x_3^2 + x_4^2} \]

$$\overrightarrow{AB} = \overrightarrow{b} + \overrightarrow{a}$$

\[\overrightarrow{AB} = \overrightarrow{b} + \overrightarrow{a} \]

$$ c = a \cdot c $$

\[c = a \cdot c \]

$$
\lim_{x\rightarrow0} \sin(x+y)
$$
$$
\lim_{x\rightarrow0} \frac{\sin(x)}{x} = 1
$$

\[\lim_{x\rightarrow0} \sin(x+y) \]

\[\lim_{x\rightarrow0} \frac{\sin(x)}{x} = 1 \]

\[x^{\frac{1}{2}} \]

$$
\int_{0}^{\frac{\pi}{2}}
$$

$$
\sum_{i=1}^{n}
$$

$$
\prod_\epsilon
$$

\[\int_{0}^{\frac{\pi}{2}} \]

\[\sum_{i=1}^{n} \]

\[\prod_\epsilon \]

$ a, b, c \neq \{ \{ a\}, b, c\} $
{ 和 } 是保留字需要‘\’转义

$ a, b, c \neq { {a}, b, c} $

$ 1 + (\frac{1}{1-x^2})^3 $

$ 1 + (\frac{1}{1-x2})3 $

$ 1 + \left(\frac{1}{1-x^2}\right)^3 $

$ 1 + \left(\frac{1}{1-x2}\right)3 $

$$ \left(\left(x+y\right)\left(x-y\right)\right)^2 $$

\[\left(\left(x+y\right)\left(x-y\right)\right)^2 \]

$$ \big((x+y)(x-y)\big)^2 $$

\[\big((x+y)(x-y)\big)^2 \]


$ \big( \quad \big)$

$ \Big( \quad \Big)$

$ \bigg( \quad \bigg)$

$ \Bigg( \quad \Bigg)$

$ \big( \quad \big)$

$ \Big( \quad \Big)$

$ \bigg( \quad \bigg)$

$ \Bigg( \quad \Bigg)$

$$
 \left[
 \begin{matrix}
   1 & 2 & 3 \\\
   4 & 5 & 6 \\\
   7 & 8 & 9
  \end{matrix}
  \right]
$$

\[ \left[ \begin{matrix} 1 & 2 & 3 \\\ 4 & 5 & 6 \\\ 7 & 8 & 9 \end{matrix} \right] \]

$$
\begin{bmatrix}
1&2&3\\\
4&5&6\\\
7&8&9
\end{bmatrix}
$$

\[\begin{bmatrix} 1&2&3\\\ 4&5&6\\\ 7&8&9 \end{bmatrix} \]

$\cdots$

$\ddots$ 

$\vdots$ 

\(\cdots\)

\(\ddots\)

\(\vdots\)

$$
\begin{bmatrix}
1&2&\cdots&4\\\
7&6&\cdots&5\\\
\vdots&\vdots&\ddots&\vdots\\\
8&9&\cdots&0
\end{bmatrix}
$$

\[\begin{bmatrix} 1&2&\cdots&4\\\ 7&6&\cdots&5\\\ \vdots&\vdots&\ddots&\vdots\\\ 8&9&\cdots&0 \end{bmatrix} \]

posted @ 2018-01-20 17:15  DeepWeaver  阅读(279)  评论(0)    收藏  举报