latex数学公式
latex tutorial
z = \frac{x}{y}
\[z = \frac{x}{y}
\]
C_1 \quad= \quad c_2 + c_4^3
\[C_1 \quad= \quad c_2 + c_4^3
\]
$$
y = \sqrt {x_1^2 + x_2^2 + x_3^2 + x_4^2}
$$
$$
y = \sqrt [3]{x_1^2 + x_2^2 + x_3^2 + x_4^2}
$$
\[y = \sqrt {x_1^2 + x_2^2 + x_3^2 + x_4^2}
\]
\[y = \sqrt [3]{x_1^2 + x_2^2 + x_3^2 + x_4^2}
\]
$$\overrightarrow{AB} = \overrightarrow{b} + \overrightarrow{a}$$
\[\overrightarrow{AB} = \overrightarrow{b} + \overrightarrow{a}
\]
$$ c = a \cdot c $$
\[c = a \cdot c
\]
$$
\lim_{x\rightarrow0} \sin(x+y)
$$
$$
\lim_{x\rightarrow0} \frac{\sin(x)}{x} = 1
$$
\[\lim_{x\rightarrow0} \sin(x+y)
\]
\[\lim_{x\rightarrow0} \frac{\sin(x)}{x} = 1
\]
\[x^{\frac{1}{2}}
\]
$$
\int_{0}^{\frac{\pi}{2}}
$$
$$
\sum_{i=1}^{n}
$$
$$
\prod_\epsilon
$$
\[\int_{0}^{\frac{\pi}{2}}
\]
\[\sum_{i=1}^{n}
\]
\[\prod_\epsilon
\]
$ a, b, c \neq \{ \{ a\}, b, c\} $
{ 和 } 是保留字需要‘\’转义
$ a, b, c \neq { {a}, b, c} $
$ 1 + (\frac{1}{1-x^2})^3 $
$ 1 + (\frac{1}{1-x2})3 $
$ 1 + \left(\frac{1}{1-x^2}\right)^3 $
$ 1 + \left(\frac{1}{1-x2}\right)3 $
$$ \left(\left(x+y\right)\left(x-y\right)\right)^2 $$
\[\left(\left(x+y\right)\left(x-y\right)\right)^2
\]
$$ \big((x+y)(x-y)\big)^2 $$
\[\big((x+y)(x-y)\big)^2
\]
$ \big( \quad \big)$
$ \Big( \quad \Big)$
$ \bigg( \quad \bigg)$
$ \Bigg( \quad \Bigg)$
$ \big( \quad \big)$
$ \Big( \quad \Big)$
$ \bigg( \quad \bigg)$
$ \Bigg( \quad \Bigg)$
$$
\left[
\begin{matrix}
1 & 2 & 3 \\\
4 & 5 & 6 \\\
7 & 8 & 9
\end{matrix}
\right]
$$
\[ \left[
\begin{matrix}
1 & 2 & 3 \\\
4 & 5 & 6 \\\
7 & 8 & 9
\end{matrix}
\right]
\]
$$
\begin{bmatrix}
1&2&3\\\
4&5&6\\\
7&8&9
\end{bmatrix}
$$
\[\begin{bmatrix}
1&2&3\\\
4&5&6\\\
7&8&9
\end{bmatrix}
\]
$\cdots$
$\ddots$
$\vdots$
\(\cdots\)
\(\ddots\)
\(\vdots\)
$$
\begin{bmatrix}
1&2&\cdots&4\\\
7&6&\cdots&5\\\
\vdots&\vdots&\ddots&\vdots\\\
8&9&\cdots&0
\end{bmatrix}
$$
\[\begin{bmatrix}
1&2&\cdots&4\\\
7&6&\cdots&5\\\
\vdots&\vdots&\ddots&\vdots\\\
8&9&\cdots&0
\end{bmatrix}
\]

浙公网安备 33010602011771号