积性函数筛法

很多常用的数论函数都是积性函数,而在题目中,我们常常需要线性(甚至更高)的筛法。

对于积性函数,我们可以在筛素数的基础上稍加修改,即可完成线性筛。

首先,注意到积性函数的特点:

\[f(xy)=f(x)\times f(y) \]

而可以线性筛的积性函数,需要知道以下两个式子的快速求法:

\[f(p)=?\quad f(p^k)=?\\p\in prime \]

其中, \(f(p)\) 大多是直接定义,\(f(p^k)\) 大多是递归定义。

我们来回忆一下素数筛的过程:

inp[0]=inp[1]=1;
for(int i=2;i<=n;i++){
    if(!inp[i]){
        prime[++tot]=i;
    }
    for(int j=1;j<=tot && i*prime[j]<=n;j++){
        int tp=prime[j]*i;
        inp[tp]=1;
        if(i%prime[j]==0){
            break;
        }
    }
}

在线性筛素数的基础上,我们可以进行线性筛的修改。

首先,对于判定的质数 \(p\) ,可以直接给出定义的值。

之后,对于 \(i\%p\neq0\) ,由于 \(i\)\(p\) 互质,可以直接用积性函数性质推得。

然后,对于 \(i\%p == 0\) :

  • \(i\) 内的最小素因子是 \(p\) ,此刻可以将 \(i\) 内的素因子都除掉,然后就可以用积性函数的性质来递推了。为此,我们要记录一个最小质因子的幂次 \(low_i\)

    那么递推式就可以表示为:\(f(i\times p)=f(i/low_i)\times f(low_i\times p)\)

  • 此处还有一个特殊的判定,当 \(i==low_i\) 时,上式相当于没推,所以我们要用 \(f(p^k)\) 的递推来计算。

那么代码如下:

inp[0]=inp[1]=1;
f[1]=1;
for(int i=2;i<=n;i++){
    if(!inp[i]){
        prime[++tot]=i;
        f[i]=对质数的定义式;
        low[i]=i;
    }
    for(int j=1;j<=tot && i*prime[j]<=n;j++){
        int tp=prime[j]*i;
        inp[tp]=1;
        if(i%prime[j]==0){
            if(i!=low[i])
                f[tp]=f[i/low[i]]*f[low[i]*prime[j]];
            else
                f[tp]=对p的次幂的定义式;
            low[tp]=low[i]*prime[j];
            break;
        }
        f[tp]=f[i]*f[prime[j]];
        low[tp]=prime[j];
    }
}

缺点很明显,比较耗空间。(但是题目会给够的

当需要线性筛很多个积性函数时,可以同时进行。

这种基于素数筛的线性筛法,有时不止对积性函数有用,对于一些和素数有关的函数也可以筛出,具体在我写的莫比乌斯反演中有例子。


-EOF-
posted @ 2020-02-24 19:47  T_horn  阅读(225)  评论(0编辑  收藏  举报