JPMML解析PMML模型并导入数据进行分析生成结果
JPMML解析PMML模型并导入数据进行分析生成结果
2018-05-12 15:53 halberts 阅读(5469) 评论(1) 编辑 收藏
JPMML解析Random Forest模型并使用其预测分析
导入Jar包
maven 的pom.xml文件中添加jpmml的依赖
<dependency>
<groupId>org.jpmml</groupId>
<artifactId>pmml-evaluator</artifactId>
<version>1.3.7</version>
</dependency>
具体实现代码
模型读取类
import java.io.*;
import java.nio.charset.Charset;
import java.util.*;
import com.google.common.io.Files;
import org.dmg.pmml.FieldName;
/**
* 使用模型
* @author biantech
*
*/
public class PmmlCalc {
final static String utf8="utf-8";
public static void main(String[] args) throws IOException {
if(args.length < 2){
System.out.println("参数个数不匹配");
}
//文件生成路径
String pmmlPath = args[0];
String modelArgsFilePath = args[1];
PmmlInvoker invoker = new PmmlInvoker(pmmlPath);
List<Map<FieldName, String>> paramList = readInParams(modelArgsFilePath);
int lineNum = 0; //当前处理行数
File file = new File("result.txt");
for(Map<FieldName, String> param : paramList){
lineNum++;
//System.out.println("======当前行: " + lineNum + "=======");
Files.append("======当前行: " + lineNum + "=======",file,Charset.forName(utf8));
Map<FieldName, ?> result = invoker.invoke(param);
Set<FieldName> keySet = result.keySet(); //获取结果的keySet
for(FieldName fn : keySet){
String tempString = result.get(fn).toString()+"\n";
Files.append(tempString,file,Charset.forName(utf8));
}
}
System.out.println("resultFile="+file.getAbsolutePath());
}
/**
* 读取参数文件
* @param filePath 文件路径
* @return
* @throws IOException
*/
public static List<Map<FieldName,String>> readInParams(String filePath) throws IOException{
InputStream is;
is = PmmlCalc.class.getClassLoader().getResourceAsStream(filePath);
if(is==null){
is = new FileInputStream(filePath);
}
InputStreamReader isreader = new InputStreamReader(is);
BufferedReader br = new BufferedReader(isreader);
String[] nameArr = br.readLine().split(","); //读取表头的名字
ArrayList<Map<FieldName,String>> list = new ArrayList<>();
String paramLine; //一行参数
//循环读取 每次读取一行数据
while((paramLine = br.readLine()) != null){
Map<FieldName,String> map = new HashMap<>();
String[] paramLineArr = paramLine.split(",");
for(int i=0; i<paramLineArr.length; i++){//一次循环处理一行数据
map.put(new FieldName(nameArr[i]), paramLineArr[i]); //将表头和值组成map 加入list中
}
list.add(map);
}
is.close();
return list;
}
}
调用执行类:PmmlInvoker
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.Map;
import javax.xml.bind.JAXBException;
import org.dmg.pmml.FieldName;
import org.dmg.pmml.PMML;
import org.jpmml.evaluator.ModelEvaluator;
import org.jpmml.evaluator.ModelEvaluatorFactory;
import org.jpmml.model.PMMLUtil;
import org.xml.sax.SAXException;
/**
* 读取pmml 获取模型
* @author biantech
*
*/
public class PmmlInvoker {
private ModelEvaluator modelEvaluator;
// 通过文件读取模型
public PmmlInvoker(String pmmlFileName) {
PMML pmml = null;
InputStream is = null;
try {
if (pmmlFileName != null) {
is = PmmlInvoker.class.getClassLoader().getResourceAsStream(pmmlFileName);
if(is==null){
is = new FileInputStream(pmmlFileName);
}
pmml = PMMLUtil.unmarshal(is);
}
this.modelEvaluator = ModelEvaluatorFactory.newInstance().newModelEvaluator(pmml);
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
if(is!=null)
is.close();
} catch (Exception localIOException3) {
localIOException3.printStackTrace();
}
}
this.modelEvaluator.verify();
System.out.println("模型读取成功");
}
// 通过输入流读取模型
public PmmlInvoker(InputStream is) {
PMML pmml;
try {
pmml = PMMLUtil.unmarshal(is);
try {
is.close();
} catch (IOException localIOException) {
}
this.modelEvaluator = ModelEvaluatorFactory.newInstance().newModelEvaluator(pmml);
} catch (SAXException e) {
pmml = null;
} catch (JAXBException e) {
pmml = null;
} finally {
try {
is.close();
} catch (IOException localIOException3) {
}
}
this.modelEvaluator.verify();
}
public Map<FieldName, String> invoke(Map<FieldName, String> paramsMap) {
return this.modelEvaluator.evaluate(paramsMap);
}
}
如何运行
- mvn package 命令生成 jpmml-parser-1-jar-with-dependencies.jar
- 将pmml文件, 数据集文件,jar 放在同一个目录下.(如 demo-model.pmml ,demo-data.csv)
使用命令行运行
java -jar jpmml-parser-1-jar-with-dependencies.jar demo-model.pmml demo-data.csv
![]()
- 运行结束后会生成一个result.txt,里面存储的是对数据的预测分析结果
======当前行: 1=======ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
setosa
1.0
0.0
0.0
======当前行: 2=======ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
setosa
1.0
0.0
0.0
======当前行: 3=======ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
setosa
1.0
0.0
0.0
======当前行: 4=======ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
setosa
1.0
0.0
0.0
======当前行: 5=======ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
setosa
1.0
0.0
0.0
======当前行: 6=======ProbabilityDistribution{result=setosa, probability_entries=[setosa=1.0]}
setosa
1.0
0.0
0.0
具体源代码请看如下地址
https://github.com/biantech/jpmml-parser

使用命令行运行

浙公网安备 33010602011771号