Codeforces 1493D GCD of an Array

链接

题目链接 比赛链接

题解

大致题意是单点乘一个数,查询全局GCD。范围都是 2 × 1 0 5 2\times 10^5 2×105

之前看到过一个类似的题可以直接开一棵线段树维护区间GCD,push_up 函数写成 tree[pos] = __gcd(tree[pos << 1], tree[pos << 1 | 1]);,但在这里行不通,因为在叶子结点取模是错的,不取模又会溢出。

考虑区间 [ 1 , 2 × 1 0 5 ] [1,2\times 10^5] [1,2×105] 只有 17985 17985 17985 个质数,可以对于每一个质数开一棵维护区间最小值的动态开点线段树。想法很暴力,调起来有点麻烦。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef vector<int> vi;
template <typename T>
inline void read(T &x)
{
    T data = 0, f = 1;
    char ch = getchar();
    while (!isdigit(ch))
    {
        if (ch == '-')
            f = -1;
        ch = getchar();
    }
    while (isdigit(ch))
    {
        data = (data << 3) + (data << 1) + ch - '0';
        ch = getchar();
    }
    x = f * data;
}
template <typename T, typename... Args>
inline void read(T &t, Args &...args)
{
    read(t);
    read(args...);
}
const int maxn = 2e5 + 9;
const int maxt = 1.5e7;
const ll mod = 1e9 + 7;
bitset<maxn> num;
vi prime;
int rnk[maxn];
void init()
{
    for (int i = 2; i <= 200000; ++i)
    {
        if (!num[i])
            prime.emplace_back(i);
        for (int j = 0; j < prime.size(); ++j)
        {
            if (i * prime[j] >= 200000)
                break;
            num[i * prime[j]] = 1;
            if (i % prime[j] == 0)
                break;
        }
    }
    for (int i = 2; i < 200000; ++i)
    {
        num[i] = !num[i];
        rnk[i] = rnk[i - 1] + num[i];
    }
}
ll ksm(ll b, int k)
{
    ll ret = 1;
    while (k)
    {
        if (k & 1)
            ret = ret * b % mod;
        k >>= 1;
        b = b * b % mod;
    }
    return ret;
}
int n, q;
struct node
{
    int val, ls, rs;
    node() {}
    node(int v, int l, int r) : val(v), ls(l), rs(r) {}
};
node t[maxt];
int root[maxn], tot, a[maxn];
void push_up(int pos)
{
    t[pos].val = min(t[t[pos].ls].val, t[t[pos].rs].val);
}
void update(int &rt, int l, int r, int pos, int k)
{
    if (rt == 0)
        rt = ++tot;
    if (l == r)
    {
        t[rt].val += k;
        return;
    }
    int mid = l + r >> 1;
    if (pos <= mid)
        update(t[rt].ls, l, mid, pos, k);
    if (pos > mid)
        update(t[rt].rs, mid + 1, r, pos, k);
    push_up(rt);
}
signed main()
{
    init();
    read(n, q);
    for (int i = 1; i <= n; ++i)
    {
        read(a[i]);
        for (auto p : prime)
        {
            if (p * p > a[i])
                break;
            int tmp = 0;
            while (a[i] % p == 0)
                a[i] /= p, tmp++;
            if (tmp)
                update(root[rnk[p]], 1, n, i, tmp);
            if (a[i] <= 1)
                break;
        }
        if (num[a[i]])
            update(root[rnk[a[i]]], 1, n, i, 1);
    }
    ll ans = 1;
    for (int i = 0; i < prime.size(); ++i)
        ans = ans * ksm(prime[i], t[root[i + 1]].val);
    while (q--)
    {
        int pos, m;
        read(pos, m);
        for (auto p : prime)
        {
            if (p * p > m)
                break;
            int tmp = 0;
            while (m % p == 0)
                m /= p, tmp++;
            if (tmp)
            {
                ll last = t[root[rnk[p]]].val;
                update(root[rnk[p]], 1, n, pos, tmp);
                ans = ans * ksm(p, t[root[rnk[p]]].val - last) % mod;
            }
            if (m <= 1)
                break;
        }
        if (num[m])
        {
            ll last = t[root[rnk[m]]].val;
            update(root[rnk[m]], 1, n, pos, 1);
            ans = ans * ksm(m, t[root[rnk[m]]].val - last) % mod;
        }
        printf("%I64d\n", ans);
    }
    return 0;
}
posted @ 2021-03-09 00:35  Theophania  阅读(32)  评论(0)    收藏  举报