一、题目要求
最大连续子数组和(最大子段和)
问题: 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n
例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。
-- 引用自《百度百科》
二、代码清单
代码地址:
源代码:
#include<iostream>
using namespace std;
int SUM(int* num, int n)
{
int sum = 0;
int max = 0;
for (int i = 0; i < n; i++) {
if (sum <= 0) {
sum = num[i];
}
else {
sum = sum + num[i];
}
if (sum > max) {
max = sum;
}
}
return max;
}
int main()
{
int i, n;
int num[100];
cin >> n;
for (i = 0; i < n; i++)
{
cin >> num[i];
}
int a = SUM(num, n);
cout << a << endl;
system("pause");
}
程序运行结果:

三、流程图

四、单元测试
我选择的是判定/条件覆盖,四组测试数据为
- num[]={} max=0;
- num[] = { -2,11,-4,13,-5,-2 } max=20;
- num[] = { -1,-2,-5,-7 } max=0;
- num[] = { 1,2,6,7 } max=16.
测试代码
TEST_METHOD(TestMethod1)
{
int *num = {};
int n = 0;
int max = SUM(num, n);
Assert::AreEqual(max, 0);
}
TEST_METHOD(TestMethod2)
{
int num[] = { -2,11,-4,13,-5,-2 };
int n = sizeof(num) / sizeof(int);
int max = SUM(num, n);
Assert::AreEqual(max, 20);
}
TEST_METHOD(TestMethod3)
{
int num[] = { -1,-2,-5,-7 };
int n = sizeof(num) / sizeof(int);
int max = SUM(num, n);
Assert::AreEqual(max, 0);
}
TEST_METHOD(TestMethod4)
{
int num[] = { 1,2,6,7 };
int n = sizeof(num) / sizeof(int);
int max = SUM(num, n);
Assert::AreEqual(max, 16);
}
单元测试结果

浙公网安备 33010602011771号